1,649 research outputs found

    Inversion of 2 wavelength Lidar data for cloud properties

    Get PDF
    The inversion of the lidar equation to derive quantitative properties of the atmosphere has continued to present considerable difficulty. The results of a study in which Klett's procedure was utilized for the analysis of cloud backscatter measurements made simulataneously at two ruby lidar wavelengths (694nm,347nmm) are presented. With one lidar system a cloud is probed at the two wavelength and the backscatter measured simulataneously by separate receivers. As a result two sigma profiles which should differ only because the wavlength dependence of the scattering. Experimental data presented to demonstrate the effects and the implications of the applications of the inversion method will be discussed

    Determination of cloud microphysical properties by laser backscattering and extinction measurements

    Get PDF
    The extinction and backscattering of 514 nm laser radiation in polydisperse water droplet clouds was studied in the laboratory. Three cloud size distributions with modal diameters of 0.02, 5.0, and 12.0 microns were investigated. The relationships between the cloud optical parameters (attentuation coefficient, sigma and volume backscattering coefficient, Beta (sub pi)) and the cloud water content, C, were measured for each size distribution. It was found that a linear relationship exists between sigma and C and between beta (sub pi) and C for cloud water content values up to 3gm/cubic m. The linear relationships obtained, however, have slopes which depend on the droplet size distribution. For a given water content both sigma and beta (sub pi) increase as the modal diameter decreases. The measured data are compared with existing theoretical analyses and discussed in terms of thie application to lidar measurements of atmospheric clouds. It is concluded that the empirical information obtained can serve as a basis for quantitative lidar measurements

    Laboratory measurements of forward and backward scattering of laser beams in water droplet clouds

    Get PDF
    Many aspects of the forward and backward scattering in dense water droplet clouds were studied using a laboratory scattering facility. This system is configured in a lidar geometry to facilitate comparison of the laboratory results to current lidar oriented theory and measurements. The backscatter measurements are supported with simultaneous measurements of the optical density, mass concentration, and droplet size distribution of the clouds. Measurements of the extinction and backscatter coefficients at several important laser wavelength have provided data on the relationship between these quantities for laboratory clouds at .633, 1.06, and 10.6 microns. The polarization characteristics of the backscatter of 1.06 microns were studied using several different types of clouds. More recently, the laboratory facility was modified to allow range-resolved backscatter measurements at 1.06 microns. Clouds made up of 3 layers, each with its own density, can be constructed. This allows the study of the effect of cloud inhomogeneity on the forward and backscatter

    EEC Competition Law

    Get PDF

    The potential of low-intensity and online interventions for depression in low- and middle-income countries

    Get PDF
    The World Health Organization (WHO) reports that low- and middle-income countries (LMICs) are confronted with a serious ‘mental health gap’, indicating an enormous disparity between the number of individuals in need of mental health care and the availability of professionals to provide such care (WHO in 2010). Traditional forms of mental health services (i.e. face-to-face, individualised assessments and interventions) are therefore not feasible. We propose three strategies for addressing this mental health gap: delivery of evidence-based, low-intensity interventions by non-specialists, the use of transdiagnostic treatment protocols, and strategic deployment of technology to facilitate access and uptake. We urge researchers from all over the world to conduct feasibility studies and randomised controlled studies on the effect of low-intensity interventions and technology supported (e.g. online) interventions in LMICs, preferably using an active control condition as comparison, to ensure we disseminate effective treatments in LMICs

    The Transverse Proximity Effect: A Probe to the Environment, Anisotropy, and Megayear Variability of QSOs

    Full text link
    The transverse proximity effect is the expected decrease in the strength of the Lya forest absorption in a QSO spectrum when another QSO lying close to the line of sight enhances the photoionization rate above that due to the average cosmic ionizing background. We select three QSOs from the Early Data Release of the Sloan Digital Sky Survey that have nearby foreground QSOs, with proper line of sight tangential separations of 0.50, 0.82, and 1.10 h^{-1} Mpc. We estimate that the ionizing flux from the foreground QSO should increase the photoionization rate by a factor (94, 13, 13) in these three cases, which would be clearly detectable in the first QSO and marginally so in the other two. We do not detect the transverse proximity effect. Three possible explanations are provided: an increase of the gas density in the vicinity of QSOs, time variability, and anisotropy of the QSO emission. We find that the increase of gas density near QSOs can be important if they are located in the most massive halos present at high redshift, but is not enough to fully explain the absence of the transverse proximity effect. Anisotropy requires an unrealistically small opening angle of the QSO emission. Variability demands that the luminosity of the QSO with the largest predicted effect was much lower 10^6 years ago, whereas the transverse proximity effect observed in the HeII Lya absorption in QSO 0302-003 by Jakobsen et al. (2003) implies a lifetime longer than 10^7 years. A combination of all three effects may better explain the lack of Lya absorption reduction. A larger sample of QSO pairs may be used to diagnose the environment, anisotropy and lifetime distribution of QSOs.Comment: 27 pages, 13 figures, accepted by Ap
    corecore