2,470 research outputs found

    Increase of an introduced bird competitor in old-growth forest associated with restoration

    Get PDF
    Many successful invasions involve long initial periods in which the invader exists at low densities followed by sudden population increases. The reasons for such time-lags remain poorly understood. Here we document a sudden increase in density of the introduced Japanese white-eye (Zosterops japonicus) in a restoration area contiguous with old-growth forest at Hakalau Forest National Wildlife Refuge on the Island of Hawaii. The refuge, with very high density of native birds, existed in a pocket of low whiteeye density that persisted for at least 20 years since the late 1970s. The refuge began an extensive native trees restoration project in 1989 within a 1314 ha abandoned pasture above old-growth forest. This area was soon colonized by white-eyes and their population grew exponentially once the trees had grown tall enough to develop a canopy. This increase was in turn followed by significantly more white-eyes in the open and closed forests adjacent to the restoration area. Competition between white-eyes and native species was documented on study sites within these forests. Density data indicate that competition was more widespread, with loss of tens of thousands of native birds in the 5371 ha area surveyed. Our results are consistent with the view that ecological barriers may delay the population increase of invaders and that human-derived activities may help invaders cross these barriers by creating new ecological opportunities. Control of white-eye numbers may be essential for recovery of native species

    Experiment K-6-27. Analysis of radiographs and biosamples from primate studies

    Get PDF
    Serial high-contrast radiographs were obtained of both arms and the right leg of two flight and four control monkeys for the period L-60 to S+16. Longitudinal growth of the tibia, radius and ulna was linear over this period in the control monkeys. In the flight monkey for whom the feeder malfunctioned, there were significant decreases in growth of the long bones. There were also hypermineralized growth arrest lines produced in the distal radial and ulnar metaphyses following resumption of growth. In the other flight monkey, there was a suggestion of decreased long bone growth during flight and immediate postflight periods, but this recovered by the end of the postflight control experiment. There was also an increase in intracortical resorption, indicative of skeletal activation. No major changes in cortical thickness or other parameters were noted, but modification of the techniques to obtain very high quality radiographs in further studies should allow subtle changes in these processes to be quantified

    Inlet protein aggregation: a new mechanism for lubricating film formation with model synovial fluids.

    Get PDF
    This paper reports a fundamental study of lubricant film formation with model synovial fluid components (proteins) and bovine serum (BS). The objective was to investigate the role of proteins in the lubrication process. Film thickness was measured by optical interferometry in a ball-on-disc device (mean speed range of 2-60 mm/s). A commercial cobalt-chromium (CoCrMo) metal femoral head was used as the stationary component. The results for BS showed complex time-dependent behaviour, which was not representative of a simple fluid. After a few minutes sliding BS formed a thin adherent film of 10-20 nm, which was attributed to protein absorbance at the surface. This layer was augmented by a hydrodynamic film, which often increased at slow speeds. At the end of the test deposited surface layers of 20-50 nm were measured. Imaging of the contact showed that at slow speeds an apparent 'phase boundary' formed in the inlet just in front of the Hertzian zone. This was associated with the formation of a reservoir of high-viscosity material that periodically moved through the contact forming a much thicker film. The study shows that proteins play an important role in the film-forming process and current lubrication models do not capture these mechanisms

    Electronic aperture control devised for solid state imaging system

    Get PDF
    Electronic means of performing the equivalent of automatic aperture control has been devised for the new class of television cameras that incorporates a solid state imaging device in the form of phototransistor mosaic sensors

    Experiment K-6-04. Trace element balance in rats during spaceflight

    Get PDF
    Exposure to microgravity causes alterations in the skeletal and mineral homeostatic systems. Little is known about the effects of flight in an older skeleton; limited data suggest that bone resorption is increased after 5 days but no data are available about other metabolic effects. The response of a more slowly-growing skeleton to microgravity may be different than that of a younger animal, similar to the different responses seen in adolescents and adult humans to immobilization. This experiment was designed to investigate changes occurring in skeletal and mineral homeostatis in these older rats flown for two weeks in space. We may expect that the two portions of the rat vertebra, the vertebral body and the posterior elements, will show different responses to spaceflight. The results of the analyses from this study confirm major differences between portions of the vertebra. The posterior bone is more highly mineralized, evidenced by increased concentration (per unit weight of bone) of calcium (5 percent), phosphorus (6 percent) and osteocalcin (37 percent), similar to the differences seen between proximal and mid humerus in previous studies. The major increase in osteocalcin content indicates the presence of mature, low-turnover bone. The difference between flight and control animals were minimal in these older, slower-growing rats. Mass of whole vertebrae increased 6.2 percent in synchronous rats compared to less than 2 percent in flight rats over the 16 days when compared to basal controls, suggesting a decreased rate of bone growth in flight. Compared to young rats in which vertebral mass increased over 40 percent in 10 days in controls and 20 percent in flight rats, this may be a clear indication that even in the older skeleton bone growth will slow in microgravity

    Fractionation of human immune γ-globulin

    Get PDF
    Equine and bovine serum proteins have recently been fractionated by means of a physical method utilizing an electrophoretic adaptation of the principles of the Clusius column (l-4), first described and tested by Kirkwood (5) and Nielsen (6). The method of electrophoresis-convection has now been applied to the fractionation of human γ-globulin. The γ-globulin was prepared by ethanol fractionation (7) from the plasma of individuals hyperimmunized to Hemophilus pertussis organisms. The resulting fractions of γ-globulin have been characterized electrophoretically, and the protective antibody activity and agglutinin titer have been measured

    Hall current accelerator Final report, 10 Jun. 1964 - 10 Sep. 1965

    Get PDF
    Axisymmetric Hall current accelerator as electric spacecraft propulsion syste
    corecore