735 research outputs found

    Aquaporins in health and disease: An overview focusing on the gut of different species

    Get PDF
    Aquaporins (AQPs) play a pivotal role in gut homeostasis since their distribution and function is modulated both in physiological and in pathophysiological conditions. The transport of water and solutes through gut epithelia is essential for osmoregulation and digestive and absorptive functions. This passage is regulated by different AQP isoforms and characterized by their peculiar distribution in the gastrointestinal tract. To date, AQP localization has been identified in the gut and associated organs of several mammalian species by different techniques (immunohistochemical, western blotting, and RT-PCR). The present review describes the modulation of AQP expression, distribution, and function in gut pathophysiology. At the same time, the comparative description of AQP in animal species sheds light on the full range of AQP functions and the screening of their activity as transport modulators, diagnostic biomarkers, and drug targets. Moreover, the phenotype of knockout mice for several AQPs and their compensatory role and the use of specific AQP inhibitors have been also reviewed. The reported data could be useful to design future research in both basic and clinical fields

    Mesoangioblasts of inclusion-body myositis: a twofold tool to study pathogenic mechanisms and enhance defective muscle regeneration

    Get PDF
    Mesoangioblasts are a class of adult stem cells of mesoderm origin, potentially useful for the treatment of primitive myopathies of different etiology. Extensive in vitro and in vivo studies in animal models of muscular dystrophy have demonstrated the ability of mesoangioblast to repair skeletal muscle when injected intra-arterially. In a previous work we demonstrated that mesoangioblasts obtained from diagnostic muscle biopsies of IBM patients display a defective differentiation down skeletal muscle and this block can be corrected in vitro by transient MyoD transfection. We are currently investigating different pathways involved in mesoangioblasts skeletal muscle differentiation and exploring alternative stimulatory approaches not requiring extensive cell manipulation. This will allow to obtain safe, easy and efficient molecular or pharmacological modulation of pro-myogenic pathways in IBM mesoangioblasts. It is of crucial importance to identify factors (ie. cytokines, growth factors) produced by muscle or inflammatory cells and released in the surrounding milieu that are able to regulate the differentiation ability of IBM mesoangioblasts. To promote myogenic differentiation of endogenous mesoangioblasts in IBM muscle, the modulation of such target molecules selectively dysregulated would be a more handy approach to enhance muscle regeneration compared to transplantation techniques

    Seasonal reproductive activity and innervation of vas deferens and accessory male genital glands in the water buffalo (Bubalus bubalis)

    Get PDF
    Autonomic nerves supplying mammalian male internal genital organs have an important role in the regulation of reproductive function. To find out the relationships between the neurochemical content of these nerves and the reproductive activity, we performed an immunohistochemical study in a species, the water buffalo, exhibiting a seasonal sexual behaviour. The distribution of noradrenergic and peptide-containing nerves was evaluated during the mating (autumn-winter) and non-mating (spring-summer) periods. During the mating period, a dense noradrenergic innervation was observed to supply the vas deferens as well as the accessory genital glands. Peptide-containing nerves were also observed but with a lower density. During the non-mating period noradrenergic nerves dramatically reduced. These results suggest that there is a neuro-endocrine interaction between androgen hormones and the autonomic nerve supply in the regulation of male water buffalo reproductive functions

    Cellular distribution of aquaporins in testes of normal and cryptorchid dogs: A preliminary study on dynamic roles

    Get PDF
    Fluid regulation within the male gonad is an important process for promoting sperm differentiation and maturation. Aquaporins (AQPs) are a family of thirteen integral membrane proteins involved in these processes. The expression of several genes of AQPs occurs in the male reproductive tract of humans and other animal species, although there are few studies on domestic animals. In this study, the localization of AQP7, AQP8, and AQP9 as well as the abundances of protein and mRNA transcripts were examined in normal and cryptorchid dog testes. There was immunohistochemical localization of AQP7, AQP8, and AQP9 in both the tubular and interstitial compartments of the normal and retained testes and crytorchid dogs, albeit there was an obvious difference in cellular localization with the testes from the cryptorchid dogs. These results were supported by western blotting and real-time RT-PCR analyses, there was a lesser AQP7 and greater AQP9 abundance of protein and mRNA transcripts in the cryptorchid testis. These findings indicate combined testicular functions of AQPs in cell volume regulation. In addition, with the cryptorchid condition characterized there was a different cellular distribution of AQPs supporting the thought that early detection is important for controlling possible side effects of cyptorchidism, such as pre-neoplastic and carcinogenic outcomes. © 2019 Elsevier B.V

    Differential abundances of AQP3 and AQP5 in reproductive tissues from dogs with and without cryptorchidism

    Get PDF
    quaporins (AQPs) are integral transmembrane proteins facilitating transport of water and small solutes, such as glycerol and urea, between cells. In male reproductive tracts, AQPs maintain a milieu conducive for sperm formation, maturation, and storage. The aim of this study was to clarify effects of testicular and epidydimal function on male fertility by investigating localisation and abundances of AQP3 and AQP5 in testes and epididymal segments from dogs with and without unilateral cryptorchidism. Immunohistochemistry results indicated AQP3 and AQP5 have different distribution patterns in reproductive tissues of dogs with and without unilateral cryptorchidism. The AQP3, an aquaglyceroprotein, is present in different germ and Sertoli cells in testis of dogs without cryptorchidism. The AQP5 protein was not detected in germ cells but was present in Sertoli and Leydig cells and in endothelia of blood vessels. In cryptorchid dogs, AQP3 was detected in early-developing germ and Sertoli cells, and AQP5 had a distribution pattern similar to testes of dogs without cryptorchidism. In the epididymis, AQP3 and AQP5 were localised in epithelial cells of dogs with and without cryptorchidism in a cell-specific manner. The AQP3 and AQP5 protein was in larger abundance in the gonads from dogs with and without cryptorchidism. In contrast, AQP3 and AQP5 abundance increased in each segment of the cryptorchid epididymis, likely as a compensatory mechanism associated with the pathologic condition. These results indicate involvement of AQP3 and AQP5 in spermatogenesis and sperm maturation. Results from the present study indicate dogs are a useful for comparative reproductive biology studie

    Hereditary inclusion-body myopathy with sparing of the quadriceps: the many tiles of an incomplete puzzle

    Get PDF
    The hereditary inclusion-body myopathies encompass several syndromes with autosomal recessive or dominant inheritance. Despite a different clinical presentation they all have a progressive course leading to severe disability and share similar pathologic findings at the muscle biopsy. Quadriceps-sparing autosomal recessive hereditary inclusion-body myopathy (h-IBM) is the commonest form and is tied to mutations of the UDP-Nacetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) that codes for a rate-limiting enzyme in the sialic acid biosynthetic pathway. Despite the identification of the causative gene defect, it has not been clarified how mutations of the GNE gene impair muscle homeostasis. Although several lines of evidence argue in favor of an abnormal sialylation of muscle glycoproteins playing a key role in h-IBM pathogenesis, others studies have demonstrated new functions of the GNE gene, outside the sialic acid biosynthetic pathway, that may also be relevant. This review illustrates the clinical and pathologic characteristics of h- IBM and the main clues available to date concerning the possible pathogenic mechanisms of this disorder. Understanding the molecular mechanism underlying h-IBM pathology is a fundamental requisite to plan a future attempt to therapy

    Aquaporins Are Differentially Regulated in Canine Cryptorchid Efferent Ductules and Epididymis

    Get PDF
    The efferent ductules and the epididymis are parts of the male reproductive system where spermatozoa mature. Specialized epithelial cells in these ducts contribute to the transport of fluids produced by spermatozoa's metabolic activity. Aquaporins (AQPs) have been demonstrated to be expressed in the spermatozoan membrane and testis epithelial cells, where they contribute to regulating spermatozoan volume and transit through environments of differing osmolality. Due to the lack of detailed literature regarding AQP expression in the canine male genital tract, the aim of this study was to investigate both the distribution and expression of AQP7, AQP8, and AQP9 in the efferent ductules and epididymal regions (caput, corpus, and cauda) from normal and cryptorchid dogs by using immunohistochemistry, Western blotting, and real-time reverse transcription polymerase chain reaction (RT-PCR). Our results show different patterns for the distribution and expression of the examined AQPs, with particular evidence of their upregulation in the caput and downregulation in the cauda region of the canine cryptorchid epididymis. These findings are associated with a modulation of Hsp70 and caspase-3 expression, suggesting the participation of AQPs in the luminal microenvironment modifications that are peculiar characteristics of this pathophysiological condition

    A complete one-loop calculation of electroweak supersymmetric effects in tt-channel single top production at LHC

    Full text link
    We have computed the complete one-loop electroweak effects in the MSSM for single top (and single antitop) production in the tt-channel at hadron colliders, generalizing a previous analysis performed for the dominant dtdt final state and fully including QED effects. The results are quite similar for all processes. The overall Standard Model one-loop effect is small, of the few percent size. This is due to a compensation of weak and QED contributions that are of opposite sign. The genuine SUSY contribution is generally quite modest in the mSUGRA scenario. The experimental observables would therefore only practically depend, in this framework, on the CKM WtbWtb coupling.Comment: 25 pages, several eps figures. Update corresponding to published versio

    Effects of orexins on 17β-estradiol synthesis and P450 aromatase modulation in the testis of alpaca (Vicugna pacos).

    Get PDF
    The steroidogenic enzyme P450 aromatase (ARO) has a key role in the conversion of testosterone (T) into estrogens (E), expressed as 17β-estradiol. The presence and localization of this key enzyme have not been described before in the South American camelid alpaca (Vicugna pacos). In our previous studies of the expression and biological effects of orexin A (OxA) and OxB on the alpaca testis demonstrated that OxA, via its specific receptor 1 (OX1R), stimulated T synthesis. In order to extend these findings, we presently explored the presence and localization of ARO in the alpaca male gonad, and the possible correlation between ARO and the orexinergic complex. Western blotting and immunohistochemistry demonstrated the presence of ARO in tissue homogenates and its localization in the tubular and interstitial compartments of the alpaca testis, respectively. The addition of OxA to fresh testicular slices decreased the 17β-estradiol E levels. This effect was annulled by the sequential addition of the selective OX1R antagonist, SB-408124. OxB incubation did not have any effect on the biosynthesis of E. Furthermore, the OxA-mediated down-regulation of E secretion could be ascribed to ARO inhibition by exogenous OxA, as indicated by measurement of ARO activity in tissue slices incubated with OxA. Overall, our findings suggest that locally secreted OxA interacting with OX1R could indirectly inhibit ARO activity, disabling the conversion of T to E, and consequently lowering E biosynthesis and increasing the production of T in mammalian testis
    • …
    corecore