262 research outputs found
The Montage Image Mosaic Service: Custom Image Mosaics On-Demand
The Montage software suite has proven extremely useful as a general engine for reprojecting, background matching, and mosaicking astronomical image data from a wide variety of sources. The processing algorithms support all common World Coordinate System (WCS) projections and have been shown to be both astrometrically accurate and flux conserving. The background ‘matching’ algorithm does not remove background flux but rather finds the best compromise background based on all the input and matches the individual images to that. The Infrared Science Archive (IRSA), part of the Infrared Processing and Analysis Center (IPAC) at Caltech, has now wrapped the Montage software as a CGI service and provided a compute and request management infrastructure capable of producing approximately 2 TBytes / day of image mosaic output (e.g. from 2MASS and SDSS data). Besides the basic Montage engine, this service makes use of a 16-node LINUX cluster (dual processor, dual core) and the ROME request management software developed by the National Virtual Observatory (NVO). ROME uses EJB/database technology to manage user requests, queue processing and load balance between users, and managing job monitoring and user notification. The Montage service will be extended to process userdefined data collections, including private data uploads
The influence of metal ions on native silk rheology
Whilst flow is the basis for silk fibre formation, subtle changes in a silk feedstocks’ chemical environment may serve to increase both energetic efficiency and control hierarchical structure development during spinning. Despite the role of pH being largely understood, the influence of metal ions is not, only being inferred by correlative work and observations. Through a combination of rheology and microscopy, we provide a causative study of how the most abundant metal ions in the silk feedstock, Ca2+ and K+, affect its flow properties and structure. Our results show that Ca2+ ions increase viscosity and prevent molecular alignment and aggregation, providing ideal storage conditions for unspun silk. In contrast, the addition of K+ ions promotes molecular alignment and aggregation and therefore seems to transfer the silk feedstock into a spinning state which confirms recent ‘sticky reptation’ modelling hypotheses. Additionally, we characterised the influence of the ubiquitous kosmotropic agent Li+, used to prepare regenerated silk solutions, and find that it promotes molecular alignment and prevents aggregation which may permit a range of interesting artificial silk processing techniques to be developed. In summary, our results provide a clearer picture of how metal ions co-ordinate, control and thus contribute towards silk protein self-assembly which in turn can inspire structuring approaches in other biopolymer systems
Extensional flow behaviour and spinnability of native silk
Silk fibres are assembled via flow. While changes in the physiological environment of the gland as well as the shear rheology of silk are largely understood, the effect of extensional flow fields on native silk proteins is almost completely unknown. Here we demonstrate that filament stretching on a conventional tensile tester is a suitable technique to assess silk's extensional flow properties and its ability to form fibres under extensional conditions characteristic of natural spinning. We report that native Bombyx mori silk responds differently to extensional flow fields when compared to synthetic linear polymers, as evidenced by a higher Trouton ratio which we attribute to silk's increased interchain interactions. Finally, we show that native silk proteins can only be spun into stable fibres at low extension rates as a result of dehydration, suggesting that extensional fields alone are unable to induce natural fibre formation
The Design and Operation of The Keck Observatory Archive
The Infrared Processing and Analysis Center (IPAC) and the W. M. Keck
Observatory (WMKO) operate an archive for the Keck Observatory. At the end of
2013, KOA completed the ingestion of data from all eight active observatory
instruments. KOA will continue to ingest all newly obtained observations, at an
anticipated volume of 4 TB per year. The data are transmitted electronically
from WMKO to IPAC for storage and curation. Access to data is governed by a
data use policy, and approximately two-thirds of the data in the archive are
public.Comment: 12 pages, 4 figs, 4 tables. Presented at Software and
Cyberinfrastructure for Astronomy III, SPIE Astronomical Telescopes +
Instrumentation 2014. June 2014, Montreal, Canad
Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking
Montage is a portable software toolkit for constructing custom, science-grade
mosaics by composing multiple astronomical images. The mosaics constructed by
Montage preserve the astrometry (position) and photometry (intensity) of the
sources in the input images. The mosaic to be constructed is specified by the
user in terms of a set of parameters, including dataset and wavelength to be
used, location and size on the sky, coordinate system and projection, and
spatial sampling rate. Many astronomical datasets are massive, and are stored
in distributed archives that are, in most cases, remote with respect to the
available computational resources. Montage can be run on both single- and
multi-processor computers, including clusters and grids. Standard grid tools
are used to run Montage in the case where the data or computers used to
construct a mosaic are located remotely on the Internet. This paper describes
the architecture, algorithms, and usage of Montage as both a software toolkit
and as a grid portal. Timing results are provided to show how Montage
performance scales with number of processors on a cluster computer. In
addition, we compare the performance of two methods of running Montage in
parallel on a grid.Comment: 16 pages, 11 figure
Dynamic photo-cross-linking of native silk enables macroscale patterning at a microscale resolution
Light-based structuring methods have shown reconstituted silk to be a versatile and appropriate material for a range of optical and biomaterial-based applications. However, without an understanding of how an unmodified, native, silk responds to photoprocessing, the full potential of this material cannot be realized. Here, we show that the use of native silk enables the production of compound patterns with improved resolution and image quality when quantitatively compared to standard reconstituted silk, which we link directly to the influence of molecular weight. Further insights into the mechanism behind silk structure development are provided through mechanical (rheological) and structural (FTIR) measurements and results show that processing can tune properties over several orders of magnitude, enabling potential replication of several soft tissue types. Finally, broadening our application perspective, this combination of mask-less lithography and native silk resulted in the fabrication of transparent optical elements for data storage and labeling
Data reduction pipelines for the Keck Observatory Archive
The Keck Observatory Archive (KOA) currently serves ~ 42 TB of data spanning over 20 years from all ten past and current facility instruments at Keck. Although most of the available data are in the raw form, for four instruments (HIRES, NIRC2, OSIRIS, LWS), quick-look, browse products generated by automated pipelines are also offered to facilitate assessment of the scientific content and quality of the data. KOA underwrote the update of the MAKEE package to support reduction of the CCD upgrade to HIRES, developed scripts for reduction of NIRC2 data and automated the existing OSIRIS and LWS data reduction packages. We describe in some detail the recently completed automated pipeline for NIRSPEC, which will be used to create browse products in KOA and made available for quicklook of the data by the observers at the telescope. We review the currently available data reduction tools for Keck data, and present our plans and anticipated priorities for the development of automated pipelines and release of reduced data products for the rest of the current and future instruments. We also anticipate that Keck's newest instrument, NIRES, which will be delivered with a fully automated pipeline, will be the first to have both raw and level-1 data ingested at commissioning
Montage: An Astronomical Image Mosaic Service for the NVO
Montage is a software system for generating astronomical image mosaics according to user-specified size, rotation, WCS-compliant projection and coordinate system, with background modeling and rectification capabilities. Its architecture has been described in the proceedings of ADASS XII and XIII (Berriman et al. 2003, 2004). It has been designed as a toolkit, with independent modules for image reprojection, background rectification and co-addition, and will run on workstations, clusters and grids. The primary limitation of Montage thus far has been in the projection algorithm. It uses a spherical trigonometry approach that is general at the expense of speed. The reprojection algorithm has now been made 30 times faster for commonly used tangent plane to tangent plane reprojections that cover up to several square degrees, through modification of a custom algorithm first derived for the Spitzer Space Telescope. This focus session will describe this algorithm, demonstrate the generation of mosaics in real time, and describe applications of the software. In particular, we will highlight one case study which shows how Montage is supporting the generation of science-grade mosaics of images measured with the Infrared Array Camera aboard the Spitzer Space Telescope
The Design and Development of the NIRSPEC Data Reduction Pipeline for the Keck Observatory Archive
The Keck Observatory Archive, a collaboration between the NASA Exoplanet Science Institute and the W. M. Keck Observatory, serves science and calibration data for all current and retired instruments from the twin Keck Telescopes. In addition to the raw data, we publicly serve quick-look, reduced data products for four instruments (HIRES, LWS, NIRC2 and OSIRIS), so that KOA users can easily assess the quality and scientific content of the data. In this paper we present the design and implementation of the NIRSPEC data reduction pipeline (DRP) for KOA. We will discuss the publicly available reduction packages for NIRSPEC, the challenges encountered when designing this fully automated DRP and the algorithm used to determine wavelength calibration from sky lines. The reduced data products from the NIRSPEC DRP are expected to be available in KOA by mid-2016
- …