106 research outputs found

    Non-monotonous crossover between capillary condensation and interface localisation/delocalisation transition in binary polymer blends

    Full text link
    Within self-consistent field theory we study the phase behaviour of a symmetric binary AB polymer blend confined into a thin film. The film surfaces interact with the monomers via short range potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to the interface localisation/delocalisation transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter case the phase diagram exhibits two critical points which correspond to the prewetting critical points of the semi-infinite system. The crossover between these qualitatively different limiting behaviours occurs gradually, however, the critical temperature and the critical composition exhibit a non-monotonic dependence on the surface field.Comment: to appear in Europhys.Let

    Structures in multicomponent polymer films : their formation, observation, applications in electronics and biotechnology

    Get PDF
    Several strategies to form multicomponent films of functional polymers, with micron, submicron and nanometer structures, intended for plastic electronics and biotechnology are presented. These approaches are based on film deposition from polymer solution onto a rotating substrate (spin-casting), a method implemented already on manufacturing lines. Film structures are determined with compositional (nanometer) depth profiling and (submicron) imaging modes of dynamic secondary ion mass spectrometry, near-field scanning optical microscopy (with submicron resolution) and scanning probe microscopy (revealing nanometer features). Self-organization of spin-cast polymer mixtures is discussed in detail, since it offers a one-step process to deposit and align simultaneously domains, rich in different polymers, forming various device elements: (i) Surface segregation drives self-stratification of nanometer lamellae for solar cells and anisotropic conductors. (ii) Cohesion energy density controls morphological transition from lamellar (optimal for encapsulated transistors) to lateral structures (suggested for light emitting diodes with variable color). (iii) Selective adhesion to substrate microtemplates, patterned chemically, orders lateral structures for plastic circuitries. (iv) Submicron imprints of water droplets (breath figures) decorate selectively micron-sized domains, and can be used in devices with hierarchic structure. In addition, selective protein adsorption to regular polymer micropatterns, formed with soft lithography after spin-casting, suggests applications in protein chip technology. An approach to reduce lateral blend film structures to submicron scale is also presented, based on (annealed) films of multicomponent nanoparticles

    A Temporal Logic Based Theory of Test Coverage and Generation

    Get PDF
    This paper presents a theory of test coverage and generation from specifications written in extended finite state machines (EFSMs). We investigate a family of coverage criteria based on the information of control flow and data flow in EFSMs and characterize them using the temporal logic CTL. We discuss the complexity of minimal cost test generation and describe a simple heuristic which uses the capability of model checkers to construct counterexamples. Our approach extends the range of applications of model checking from automatic verification of finite state systems to automatic test generation from finite state systems

    A symmetric polymer blend confined into a film with antisymmetric surfaces: interplay between wetting behavior and phase diagram

    Full text link
    We study the phase behavior of a symmetric binary polymer blend which is confined into a thin film. The film surfaces interact with the monomers via short range potentials. We calculate the phase behavior within the self-consistent field theory of Gaussian chains. Over a wide range of parameters we find strong first order wetting transitions for the semi-infinite system, and the interplay between the wetting/prewetting behavior and the phase diagram in confined geometry is investigated. Antisymmetric boundaries, where one surface attracts the A component with the same strength than the opposite surface attracts the B component, are applied. The phase transition does not occur close to the bulk critical temperature but in the vicinity of the wetting transition. For very thin films or weak surface fields one finds a single critical point at Ï•c=1/2\phi_c=1/2. For thicker films or stronger surface fields the phase diagram exhibits two critical points and two concomitant coexistence regions. Only below a triple point there is a single two phase coexistence region. When we increase the film thickness the two coexistence regions become the prewetting lines of the semi-infinite system, while the triple temperature converges towards the wetting transition temperature from above. The behavior close to the tricritical point, which separates phase diagrams with one and two critical points, is studied in the framework of a Ginzburg-Landau ansatz. Two-dimensional profiles of the interface between the laterally coexisting phases are calculated, and the interfacial and line tensions analyzed. The effect of fluctuations and corrections to the self-consistent field theory are discussed.Comment: Phys.Rev.E in prin

    Interface localisation-delocalisation transition in a symmetric polymer blend: a finite-size scaling Monte Carlo study

    Full text link
    Using extensive Monte Carlo simulations we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e, the left wall attracts the A-component of the mixture with the same strength as the right wall the B-component, and give rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localisation/delocalisation transition and the phase diagram comprises two critical points, which are the finite film width analogies of the prewetting critical point. Using finite size scaling techniques we locate these critical points and present evidence of 2D Ising critical behavior. When we reduce the film width the two critical points approach the symmetry axis ϕ=1/2\phi=1/2 of the phase diagram and for D≈2RgD \approx 2 R_g we encounter a tricritical point. For even smaller film thickness the interface localisation/delocalisation transition is second order and we find a single critical point at ϕ=1/2\phi=1/2. Measuring the probability distribution of the interface position we determine the effective interaction between the wall and the interface. This effective interface potential depends on the lateral system size even away from the critical points. Its system size dependence stems from the large but finite correlation length of capillary waves. This finding gives direct evidence for a renormalization of the interface potential by capillary waves in the framework of a microscopic model.Comment: Phys.Rev.

    On the Suitability of Estelle for Multimedia Systems

    Full text link
    Formal Description Techniques have been widely used for the specification of traditional networked applications. They have not been applied to the specification of new applications such as multimedia systems yet. In this paper, we examine the FDT Estelle with respect to its suitability for multimedia system specification and automatic derivation of efficient implementations. We show that it is possible to specify certain aspects of multimedia systems, but that Estelle is not sufficient for others. The derived implementations often perform badly. We show the reasons and propose to use a slightly modified Estelle syntax and semantics to solve the problems. The implemented solution was tested successfully

    Testing Labelled Transition Systems with Inputs and Outputs

    No full text

    Phase decomposition in polymer blend "lms cast on homogeneous substrates modi"ed by self-assembled monolayers

    No full text
    Abstract Thin "lms, formed by polymer blends spun-cast from a blend/solvent solution onto a rigid substrate, are used in many practical applications (e.g. photoresist layers, dielectric coatings). Film preparation process is often accompanied by phase decomposition (PD) during the rapid evaporation of the solvent. PD is re#ected in undulations formed on an air/"lm interface. We have studied the topography of surface undulations and the phase domain morphology in thin "lm blends of polystyrene (PS) and polyisoprene (PI) using atomic force microscopy combined with selective dissolution of blend components. Gold covered with self-assembled monolayers [HS( was used as a substrate. For "lms of PS and PI (50% by mass) cast from toluene, the PS-rich domains protrude high above the PI-rich matrix forming concave or convex islands for hydrophobic (SAM )-or hydrophilic (SAM )-support, respectively. Di!erent substrates (e.g. SAM and Si with a native oxide layer), solvents (CCl , chloroform) and PS mass fractions were used to evaluate the extent of this novel e!ect

    Hierarchic structure formation in binary and ternary polymer blends

    No full text
    The phase morphology of multi-component polymer blends is governed by the interfacial interactions of its components. We discuss here the domain morphology in thin films of model binary and ternary polymer blends containing polystyrene, poly(methyl metacrylate), and poly(2-vinylpyridine) (PS, PMMA, PVP). When sandwiched between two non-polar surfaces, characteristic lateral phase morphologies are observed after the film formation by spin-coating. We discuss here two techniques, by which hierarchical lateral structures in polymer films can be made. The first method makes use of two simultaneously occurring interfacial instabilities. The second technique employs the effect of a variation of the enthalpic interaction parameters in a ternary polymer mixture on its lateral polymer phase morphology
    • …
    corecore