122 research outputs found

    Factors in Patient Responsiveness to Directional Preference-Matched Treatment of Neck Pain With or Without Upper Extremity Radiation

    Full text link
    Purpose: Patient-related predictive factors in responsiveness to directional preference therapy for neck pain with or without upper extremity radiation (NP/R) have not been reported. A directional preference is any neck movement that, when performed repeatedly to end range, results in centralization and/or alleviation of NP/R. It was hypothesized that patient compliance with a prescribed, directional preference-matched home exercise program would improve positive responsiveness to NP/R treatment. Methods: Patient-related factors thought to affect responsiveness to care were collected retrospectively from charts and de-identified for patients with NP/R who underwent chiropractic treatment at a multispecialty spine clinic from January 2014 through June 2015. Responsiveness was measured by calculating the percentage change in Neck Bournemouth Questionnaire (NBQ) scores over treatment time. Multiple linear regression was used to identify factors associated with positive responsiveness. Results: Mean percentage change in patient NBQ score from initial intake to discharge was 50% (standard deviation: 32%). Of 104 patients meeting study inclusion criteria, 86 (83%) reported experiencing improvement after the first treatment session. Bivariate analysis of patient characteristics by compliance with directional preference-matched exercise indicated that compliant patients (n = 95, 91%) demonstrated significantly greater responsiveness to care than did noncompliant patients, at 55% versus 25% change in NBQ score, respectively (P = 0.0041). Four factors were statistically significant predictors of patient responsiveness to directional preference therapy for NP/R: patient compliance with directional preference-matched exercise (P = 0.0023), patient age (P = 0.0029), condition chronicity (P < 0.0001), and whether the patient reported improvement of symptoms following initial treatment session (P = 0.0003). Conclusions: The results of this study suggest that patient compliance with directional preference exercise is associated with patient responsiveness to conservative treatment of NP/R, as are age, chronicity and report of immediate symptom improvement

    Association of single nucleotide polymorphisms in LpIRI1 gene with freezing tolerance traits in perennial ryegrass

    Get PDF
    Perennial ryegrass is an important agricultural species, however, susceptible to winterkill. Freezing injury is caused primarily by ice formation. The LpIRI1 protein has the potential to inhibit ice recrystallization, thus minimize the damage. An association study was conducted using single nucleotide polymorphisms obtained through allele sequencing of the LpIRI1 gene and phenotypic data were collected using two phenotyping platforms in a perennial ryegrass association mapping population of 76 diverse genotypes. Winter survival (FWS) was evaluated under field conditions, while tiller survival (PTS) and electrolyte leakage (EL) at -8 °C and -12 °C were determined under controlled-environment conditions. Proline content (PC) in cold-acclimated plants was measured prior the freezing test. Significant variation in FWS, PTS, EL and PC was observed among genotypes in our panel. EL and PTS revealed significant negative correlations at -8 °C (rs = -0.40) and -12 °C (rs = -0.49). PC, however, did not show significant correlations with any of the measured traits, while FWS was correlated (rs = -0.48) with EL at -12 °C. The LpIRI1 gene was found to be highly polymorphic with an average SNP frequency of 1 SNP per 16 bp. Association analysis revealed two non-synonymous SNPs being associated with increased EL, both being located in the LpIRI1 leucine-rich repeat. The results indicate that allelic variation in the LpIRI1 gene plays an important role in the cell membrane integrity of perennial ryegrass during freezing, and can be exploited for developing more freezing tolerant cultivars

    Yet another breakdown point notion: EFSBP - illustrated at scale-shape models

    Full text link
    The breakdown point in its different variants is one of the central notions to quantify the global robustness of a procedure. We propose a simple supplementary variant which is useful in situations where we have no obvious or only partial equivariance: Extending the Donoho and Huber(1983) Finite Sample Breakdown Point, we propose the Expected Finite Sample Breakdown Point to produce less configuration-dependent values while still preserving the finite sample aspect of the former definition. We apply this notion for joint estimation of scale and shape (with only scale-equivariance available), exemplified for generalized Pareto, generalized extreme value, Weibull, and Gamma distributions. In these settings, we are interested in highly-robust, easy-to-compute initial estimators; to this end we study Pickands-type and Location-Dispersion-type estimators and compute their respective breakdown points.Comment: 21 pages, 4 figure

    Donor Killer Immunoglobulin Receptor Gene Content and Ligand Matching and Outcomes of Pediatric Patients with Juvenile Myelomonocytic Leukemia Following Unrelated Donor Transplantation

    Get PDF
    Natural killer (NK) cell determinants predict relapse-free survival after allogeneic hematopoietic cell transplantation (HCT) for acute myelogenous leukemia, and previous studies have shown a beneficial graft-versus-leukemia effect in patients with juvenile myelomonocytic leukemia (JMML). However, whether NK cell determinants predict protection against relapse for JMML patients undergoing HCT is unknown. Therefore, we investigated NK cell-related donor and recipient immunogenetics as determinants of HCT outcomes in patients with JMML. Patients with JMML (age 0 to 3 (HR, 0.52; 95% CI, 0.29 to 0.95; P = .032), centromeric A/B score (HR, 0.57; 95% CI, 033 to 0.98; P = .041), and telomeric A/B score (HR, 0.58; 95% CI, 0.34 to 1.00; P = .048). To our knowledge, this is the first study analyzing the association of NK cell determinants and outcomes in JMML HCT recipients. This study identifies potential benefits of donor KIR-B genotypes in reducing aGVHD. Our findings warrant further study of the role of NK cells in enhancing the graft-versus-leukemia effect via recognition of JMML blasts

    Reduced-bias estimator of the Conditional Tail Expectation of heavy-tailed distributions

    Get PDF
    International audienceSeveral risk measures have been proposed in the literature. In this paper, we focus on the estimation of the Conditional Tail Expectation (CTE). Its asymptotic normality has been first established in the literature under the classical assumption that the second moment of the loss variable is finite, this condition being very restrictive in practical applications. Such a result has been extended by Necir {\it et al.} (2010) in the case of infinite second moment. In this framework, we propose a reduced-bias estimator of the CTE. We illustrate the efficiency of our approach on a small simulation study and a real data analysis

    Survival Improvements in Adolescents and Young Adults after Myeloablative Allogeneic Transplantation for Acute Lymphoblastic Leukemia

    Get PDF
    AbstractAdolescents and young adults (AYAs, ages 15 to 40 years) with cancer have not experienced survival improvements to the same extent as younger and older patients. We compared changes in survival after myeloablative allogeneic hematopoietic cell transplantation (HCT) for acute lymphoblastic leukemia (ALL) among children (n = 981), AYAs (n = 1218), and older adults (n = 469) who underwent transplantation over 3 time periods: 1990 to 1995, 1996 to 2001, and 2002 to 2007. Five-year survival varied inversely with age group. Survival improved over time in AYAs and paralleled that seen in children; however, overall survival did not change over time for older adults. Survival improvements were primarily related to lower rates of early treatment-related mortality in the most recent era. For all cohorts, relapse rates did not change over time. A subset of 222 AYAs between the ages of 15 and 25 at 46 pediatric or 49 adult centers were also analyzed to describe differences by center type. In this subgroup, there were differences in transplantation practices among pediatric and adult centers, although HCT outcomes did not differ by center type. Survival for AYAs undergoing myeloablative allogeneic HCT for ALL improved at a similar rate as survival for children

    Late Effects in Hematopoietic Cell Transplant Recipients with Acquired Severe Aplastic Anemia: A Report from the Late Effects Working Committee of the Center for International Blood and Marrow Transplant Research

    Get PDF
    With improvements in hematopoietic cell transplant (HCT) outcomes for severe aplastic anemia (SAA), there is a growing population of SAA survivors after HCT. However, there is a paucity of information regarding late effects that occur after HCT in SAA survivors. This study describes the malignant and nonmalignant late effects in survivors with SAA after HCT. A descriptive analysis was conducted of 1718 patients post-HCT for acquired SAA between 1995 and 2006 reported to the Center for International Blood and Marrow Transplant Research (CIBMTR). the prevalence and cumulative incidence estimates of late effects are reported for 1-year HCT survivors with SAA. of the HCT recipients, 1176 (68.5%) and 542 (31.5%) patients underwent a matched sibling donor (MSD) or unrelated donor (URD) HCT, respectively. the median age at the time of HCT was 20 years. the median interval from diagnosis to transplantation was 3 months for MSD HCT and 14 months for URD HCT. the median follow-up was 70 months and 67 months for MSD and URD HCT survivors, respectively. Overall survival at I year, 2 years, and 5 years for the entire cohort was 76% (95% confidence interval [CI]: 74-78), 73% (95% CI: 71-75), and 70% (95% CI: 68-72). Among 1-year survivors of MSD HCT, 6% had 1 late effect and 1% had multiple late effects. for 1-year survivors of URD HCT, 13% had 1 late effect and 2% had multiple late effects. Among survivors of MSD HCT, the cumulative incidence estimates of developing late effects were all <3% and did not increase over time. in contrast, for recipients of URD HCT, the cumulative incidence of developing several late effects exceeded 3% by 5 years: gonadal dysfunction 10.5% (95% CI: 7.3-14.3), growth disturbance 7.2% (95% CI: 4.4-10.7), avascular necrosis 6.3% (95% CI: 3.6-9.7), hypothyroidism 5.5% (95% CI: 2.8-9.0), and cataracts 5.1% (95% CI: 2.9-8.0). Our results indicated that all patients undergoing HCT for SAA remain at risk for late effects, must be counseled about, and should be monitored for late effects for the remainder of their lives.Public Health Service Grant from the National Cancer InstituteNational Heart, Lung, and Blood InstituteNational Institute of Allergy and Infectious DiseasesNational Cancer InstituteHealth Resources and Services Administration/Department of Health and Human ServicesOffice of Naval ResearchAllosAmgenAngioblastChildrens Hosp Orange Cty, Dept Hematol, Orange, CA 92668 USACIBMTR Med Coll Wisconsin, Dept Biostat, Milwaukee, WI USAMed Coll Wisconsin, CIBMTR Stat Ctr, Milwaukee, WI 53226 USAKing Faisal Specialist Hosp & Res Ctr, Dept Oncol, Riyadh 11211, Saudi ArabiaNew York Med Coll, Dept Pediat Hematol Oncol & Stem Cell Transplanta, Valhalla, NY 10595 USAStemcyte, Covina, CA USADana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02115 USAUniv Florida, Dept Hematol Oncol, Gainesville, FL USAPrincess Margaret Hosp, Dept Med, Toronto, ON M4X 1K9, CanadaUniv S Florida, All Childrens Hosp, Dept Pediat Hematol & Oncol, St Petersburg, FL 33701 USAUniv Basel Hosp, Dept Hematol, CH-4031 Basel, SwitzerlandOregon Hlth & Sci Univ, Dept Hematol & Oncol, Portland, OR 97201 USAChildrens Natl Med Ctr, Dept Blood & Marrow Transplantat, Washington, DC 20010 USABaylor Coll Med, Ctr Cell Therapy, Dept Hematol & Oncol, Houston, TX 77030 USAUniv N Carolina Hosp, Dept Pediat, Chapel Hill, NC USAUniv Hosp Case, Med Ctr, Dept Med, Cleveland, OH USAUniv Arkansas Med Sci, Dept Hematol & Oncol, Little Rock, AR 72205 USACincinnati Childrens Hosp Med Ctr, Dept Bone Marrow Transplantat & Immune Deficiency, Cincinnati, OH USATufts Med Ctr, Dept Med & Pediat, Boston, MA USAUniv S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Hematol & Oncol, Tampa, FL 33612 USAFlorida Ctr Cellular Therapy, Dept Med, Orlando, FL USAUniv Fed Parana, Dept Bone Marrow Transplantat, BR-80060000 Curitiba, Parana, BrazilVanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USAInst Oncol Pediat, Dept Pediat, SĂŁo Paulo, BrazilFred Hutchinson Canc Res Ctr, Dept Clin Res & Transplantat, Seattle, WA 98104 USAMt Sinai Med Ctr, Dept Bone Marrow & Stem Cell Transplantat, New York, NY 10029 USAUniv N Carolina Hosp, Dept Hematol & Oncol, Chapel Hill, NC USAUniv Manitoba, CancerCare Manitoba, Dept Manitoba Blood & Marrow Transplant Program, Winnipeg, MB, CanadaKarolinska Univ Hosp, Ctr Allogene Stem Cell Transplantat, Dept Pediat, Stockholm, SwedenLouisiana State Univ, Hlth Sci Ctr, Childrens Hosp, Dept Pediat, New Orleans, LA USADept Natl Marrow Donor Program, Minneapolis, MN USAPublic Health Service Grant from the National Cancer Institute: U24-CA76518National Heart, Lung, and Blood Institute: 5U01HL069294Office of Naval Research: N00014-06-1-0704Office of Naval Research: N00014-08-1-0058HHSH234200637015CWeb of Scienc

    Late effects in hematopoietic cell transplant recipients with acquired severe aplastic anemia: a report from the late effects working committee of the center for international blood and marrow transplant research (CIBMTR)

    Get PDF
    CHOC Children’s Hospital - UC Irvine, Orange, CAMedical College of Wisconsin, Milwaukee, WIMedical College of Wisconsin, Milwaukee, WIKing Faisal Specialist Hospital and Research Center, Riyadh, TX, Saudi ArabiaNew York Medical College, Valhalla, NYStemcyte, Covina, CADana Farber Cancer Institute, Boston, MAUniversity of Florida, Gainesville, FLPrincess Margaret Hospital, Toronto, ON, CanadaAll Children’s Hospital, St. Petersburg, FLUniversity Hospital Basel, Basel, SwitzerlandOregon Health and Science University, Portland, ORChildren’s National Medical Center, Washington, DCBaylor College of Medicine Center for Cell Therapy, Houston, TXUniversity of North Carolina Hospitals, Chapel Hill, NCUniversity Hospitals Case Medical Center, Cleveland, OHUniversity of Arkansas for Medical Sciences, Little Rock, ARCincinnati Children’s Hospital Medical Center, Cincinnati, OHTufts Medical Center, Boston, MAH Lee Moffitt Cancer Center and Research Institute, Tampa, FLFlorida Center for Cellular Therapy, Orlando, FLUniversidade Federal de Parana, Curitiba, BrazilVanderbilt University Medical Center, Nashville, TNInstituto de Oncologia Pediatrica, Sao Paulo, BrazilFred Hutchinson Cancer Research Center, Seattle, WAMount Sinai Medical Center, New York, NYUniversity of North Carolina, Chapel Hill, NCCancerCare Manitoba, University of Manitoba, Winnipeg, CanadaKarolinska University Hospital, Center for Allogeneic Stem Cell Transplantation, Stockholm, SwedenChildrens Hospital LSU Health Sciences Center, New Orleans, LANational Marrow Donor Program, Minneapolis, MNWeb of Scienc

    Outcomes of Allogeneic Hematopoietic Cell Transplantation for Adolescent and Young Adults Compared with Children and Older Adults with Acute Myeloid Leukemia

    Get PDF
    Adolescents and young adults (AYAs) with cancer have not experienced improvements in survival to the same extent as children and older adults. We compared outcomes among children (40 years) receiving allogeneic hematopoietic cell transplant (HCT) for acute myeloid leukemia (AML)
    • …
    corecore