12 research outputs found

    Noncommutative Geometry Framework and The Feynman's Proof of Maxwell Equations

    Full text link
    The main focus of the present work is to study the Feynman's proof of the Maxwell equations using the NC geometry framework. To accomplish this task, we consider two kinds of noncommutativity formulations going along the same lines as Feynman's approach. This allows us to go beyond the standard case and discover non-trivial results. In fact, while the first formulation gives rise to the static Maxwell equations, the second formulation is based on the following assumption m[xj,xk˙]=iδjk+imθjkf.m[x_{j},\dot{x_{k}}]=i\hbar \delta_{jk}+im\theta_{jk}f. The results extracted from the second formulation are more significant since they are associated to a non trivial θ\theta -extension of the Bianchi-set of Maxwell equations. We find divθB=ηθdiv_{\theta}B=\eta_{\theta} and Bst+ϵkjsEjxk=A1d2fdt2+A2dfdt+A3,\frac{\partial B_{s}}{\partial t}+\epsilon_{kjs}\frac{\partial E_{j}}{\partial x_{k}}=A_{1}\frac{d^{2}f}{dt^{2}}+A_{2}\frac{df}{dt}+A_{3}, where ηθ\eta_{\theta}, A1A_{1}, A2A_{2} and A3A_{3} are local functions depending on the NC θ\theta -parameter. The novelty of this proof in the NC space is revealed notably at the level of the corrections brought to the previous Maxwell equations. These corrections correspond essentially to the possibility of existence of magnetic charges sources that we can associate to the magnetic monopole since divθB=ηθdiv_{\theta}B=\eta_{\theta} is not vanishing in general.Comment: LaTeX file, 16 page

    Non-commutative geometry framework and the Feynman's proof of Maxwell equations

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore