37 research outputs found

    A laboratory investigation on shear strength behavior of sandy soil: effect of glass fiber and clinker residue content

    No full text
    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%)

    Solvers for Systems of Nonlinear Algebraic Equations - Their Sensitivity to Starting Vectors

    No full text
    In this note we compare the sensitivity of six advanced solvers for systems of nonlinear algebraic equations to the choice of starting vectors. We will report on results of our experiments in which, for each test problem, the calculated solution was used as the center from which we have moved away in various directions and observed the behavior of each solver attempting to find the solution. We are particularly interested in determining the best global starting vectors. Experimental results are presented and discussed

    First-principles computational study on structural, elastic, magnetic, electronic, and thermoelectric properties of Co

    No full text
    In this research work, first-principles computational study is performed on the structural, elastic, thermal, magnetic, electronic, and thermoelectric properties of the ternary Heusler compound Co2MnGe in its cubic phase. For this purpose, the “full potential linearized augmented plane-wave FP-L(APW + lo)” approach realized in the WIEN2k code is employed. To determine total energy, the exchange–correlation energy/potential part is treated within the “Perdew–Burke–Ernzerhof (PBE)” parameterized approach of “generalized gradient approximation (GGA) and modified Becke–Johnson (mBJ)” schemes. The magnetic phase stability was predicted via quantum mechanically total energy calculations for both non-magnetic and magnetic phases. Our obtained results for total energy show that the title material is stable in the ferromagnetic phase. The analysis of the profile of density of states (DOS), band structure plots, and the calculations of spin magnetic moment endorse the semi-metallic nature of the title compound. Calculations of the elastic constants, Cij, and results of the elastic moduli, such as bulk modulus (B), shear modulus (G), Young modulus (E), Poisson ratio (ν), and ratio B/G, are reported and analyzed as well. Gibbs computational code based on the “quasi-harmonic Debye model” is used to explore thermal properties, whereas parameters to understand the thermoelectric behavior, BoltzTrap code based on Boltzmann theory for transport properties is applied. Besides that, the chemical potential effect on the Seebeck coefficient and power factor is also analyzed at temperatures 300, 600, and 900 K. The results of thermoelectric parameters of the title Heusler compound, for the spin-down channel, are found good; hence, the obtained results highlight the title compound as a potential candidate for thermoelectric devices

    Bibliography

    No full text
    frontal Package, technical report TR-93-020, Computer and Information Sciences Dept., University of Florida, June 1993. [12] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li and J. W. H. Liu, A Supernodal Approach to Sparse Partial Pivoting, preprint, Xerox Palo Alto Research Center, 1995. [13] I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University Press, London, 1986. 102 APPENDIX A. A.2. SOFTWARE 101 ` indicator for the choice of t T the execution trace t numerical threshold U right upper triangle matrix V set of intermediate variables v i node; variable ÂŻ v i to v i corresponding vector of adjoints v c(i) c(i)th critical var
    corecore