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Abstract. This paper introduces tensor methods for solving large sparse systems of nonlin- 
ear equations. Tensor methods for nonlinear equations were developed in the con ta t  of solving 
small to medium-sized dense problems. They base each iteration on a quadratic model of the 
nonlinear equations, where the second-order term is selected so tha t  the model requires no more 
derivative or function information per iteration than standard linear model-based methods, and 
hardly more storage or arithmetic operations per iteration. Computational e-xperiments on small 
to medium-sized problems have shown tensor methods to be considerably more efficient than 
standard Newton-based methods, with a particularly large advantage on sin-aular problems. This 
paper considers the extension of this approach to solve large sparse problems. The key issue 
that must be considered is how to make efficient use of sparsity in forming and solving the 
tensor model problem at each iteration. -4ccomplishing chis turns out to require an entirely new 
way of solving the tensor model that successfully exploits the sparsity of the Jacobian, whether 
the .Jacobian is nonsingular or sin,aular. We develop such an approach and, based upon it, an 
efficient tensor method for solving large sparse systems of nonlinear equations. Test results in- 
dicate that this tensor niethod is significantly more efficient and robust than an efficient sparse 
Newton-based method. in terms of iterations, function evaluations, and execution time. 
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1. Introduction 

In this paper we introduce tensor methods for solving the sparse nonlinear equations problem 

(1.1) given F : Sn - Zn, find c, E Xn such that F(z,) = 0, 

where it is assumed that n is large (say, n > loo) ,  F ( z )  is a least once continuously differ- 
entiable, and the Jacobian matrix F’[z)  E Rnxn is sparse. Large sparse systems of nonlinear 
equations arise frequently in many practical applications including various network-flow prob- 
lems and equations produced by finite-difference or finite-element discretizations of boundary 
values problems for ordinary and partial differential equations. In many situations, F‘(z,) is 
ill-conditioned or singular with a small rank deficiency. This is the case where tensor methods 
are especially intended to  improve upon the efficiency of standard algorithms based on Newton’s 
method. Tensor methods are also intended to be at  least as efficient as standard methods on 
problems where F’(z,) is nonsingular, and in practice they often seem to be considerably more 
eRcient on these problems as well. 

Tensor methods for small to medium-sized dense systems of nonlinear equations were intro- 
duced by Schnabel and Frank [20], arid a software package implementing them is described in 
(31. The methods base each iteration on a quadratic model of F(z) that has the form 
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(1.2) 

where T,  is the current iterate, and T, E RnXnx” is the tensor term at  5,. The tensor term is 
selected so that the model interpolates a. very small number, p ,  of function values from previous 
iterations. This results in Tc being a rank p lensor. which is crucial to  the efficiency of the tensor 
method. -4fter the model [12) is formed. the problem 

find d E R” that minimizes 1 1  M(zc + d )  112 (1.3) 

is solved; that is. a t  each iteration of tensor methods. a minimizer of the model is used if no root 
exists. Methods for forming the tensor term and solving the tensor model for dense systems 
of nonlinear equations are reviewed in more detail in the next section. The tensor method 
requires no more derivative or function information per iteration than Newton’s method, and 
its storage requirement and arithmetic cost per iteration are not appreciably more than for 
Newton’s method. 

Uethods based on (1.2) have been shown to have very good theoretical properties and very 
good computational performance on sriisll to medium-sized dense problems. Theoretically, the 
methods converge at  lenst its quickly as Xewton’s method on nonsingular problems and have 
been shown to have :$step Q-order 1.5 convergence on problems where the Jacobian has rank 
n-  1 at  the solution, whereas Sewton‘s irictliod is linearly convergent with constant 1/2 on such 
problems [E]. In tests reported i n  [:j] Tor both nonsingular and singular problems, the tensor 
method virtually never is less eficient tliiiii ;i standard method based upon a linear (Newton) 
model, and usually is more efficient. The improvement by the tensor method over the standard 
method is substantial, averaging about 49% in  iterations and 41% in function evaluations when 
a line search is used in each, and sboul -L2% in iterations and 31% in function evaluations when 
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the trust region is used in each. on problems solved successfully by both methods. Furthermore, 
the tensor method solves a considerable number of problems that the standard method does 
not, and the reverse virtually never is the case. 

The preliminary success of tensor methods for small to medium-sized nonlinear equations 
makes it reasonable to consider their application to large sparse systems of nonlinear equations. 
In doing so, there are several key considerations. First, tensor methods require that the Jacobian 
matrix be available. either analytically or by finite differences. at  each iteration. tVhile this is not 
always the case for small problems - quasi-Mewton approximations to the Jacobian sometimes 
being used instead - it is almost always tlie case in methods that are used for solving large 
sparse systems of nonlinear equations. The derivatives usually come from efficient sparse finite 
differences (see Section 3), from user-supplied analytic derivatives, or recently through automatic 
differentiation (see, eg. ,  [14, 151). So this requirement is not a problem and indeed fits t l is  
approach well. Second, the methods for forming and solving the tensor model must make 
efficient use of the sparsity of the Jacobian matrix and not involve any dense linear algebra 
using n x n matrices. The existing method for forming the tensor model adapts immediately 
to sparsity as is shown in Section 2. However, the most difficult and e-xpensive part of the 
tensor method is solving tlie quadratic model (1.2) efficiently, and the algorithms used for this 
so far are entirely inappropriate for large sparse problems. These algorithms make crucial use of 
orthogonal transformations of both tlie variable and function space, especially to deal efficiently 
and stably with cases when the .Jacobian niatris is singular or the tensor model has no root. 
They are not applicable to sparse problcnis because the orthogonal transformation of the variable 
space would destroy the sparsity of tlie .Jacobian. 

To deal efficiently with sparsity, we develop an entirely new way of solving the tensor model. 
This approach is able to utilize a sparse variant of Gaussian elimination or any other sparse 
direct solver. It includes techniqilcs that allow the tensor model to be solved efficiently and 
stably when the Jacobian matris is singular, based on the factorization of the Jacobian matrix 
augmciited by a small number of dense rows slid columns. It also entails ways to efficiently 
calculate the Xewton step, which is sometitncs used in the tensor algorithm, as a by-product of 
tlie calculation of the tensor step. 

Using these ingredients, we formulate an efficient tensor method for large sparse nonlinear 
equations and apply this method to a number of test problems. We compare it with an efficient 
Newton-based method for solving sparse nonlinear equations that is based upon the same sparse 
linear equations software and glohal strategy. Our esperimental results indicate that the tensor 
method is significantly niore robust anti efficient than tlie standard method, in terms of iterations, 
function e valua t io tis and esecii t io 11 I; i 11 ic. 

The remainder of this paper is org;inized as follows. In Section 2 we briefly review tensor 
methods for dense nonlinear equations. and point out the issues involved in estending them 
to large sparse problems. Section 3 very brielly surveys approaches for approximating sparse 
finite-difference .Jacobian matrices, since we use one such approach in our software. In Section 
4 we first describe an efficient algorithm for solving the tensor model when the Jacobian matris 
is sparse and nonsingular. Nest, we present a n  efficient algorithm for solving the tensor model 
when the Jacobian is sparse and rank clcficient. In Section 5 we show how to efficiently solve 
tlie standard linear model in coiijiinctioii with these algorithms for solving the tensor model, 
both when the Jacobian rriatris is nonsitigiilar and when it is rank deficient. Section 6 gives a 
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high-level description of the complete tensor method for sparse nonlinear equations, including 
the global strategy. In Section 7 we describe comparative testing for this implementation versus 
the same implementation based on Xewton's method. We present summary statistics of the test 
results and analysis of these results. Findiy, Section 8 gives a brief summary and discussion of 
future work. 

2. Brief Overview of Tensor Methods for Dense Nonlinear Equations 

Tensor methods are general-purpose methods intended especially for problems where the Jaco- 
bian matrix at  the solution is singular or ill-conditioned. Each iteration is based upon a quadratic 
model (1.2) of the nonlinear function F ( x ) .  The choice of the tensor term T, E Rnxnxn in this 
model causes the second-order term T,dd in (1.2) to have a simple and useful form. 

The tensor term is chosen to allow the model M(z, + d )  to interpolate values of the function 
F ( x )  at past iterates z-k; that is, the model satisfies 

where 

k = 1, ..., p ,  
- 

k = 1, ...) p .  

(2.1) 

The past points 2-1, ..., x - p  are selected so that the set of directions {sk} from x, to the 
selected points is strongly linearly independent; each direction SI; is required to make an angle 
of at least 45 degrees with the subspace spanned by the previously selected past directions. The 
procedure for finding linearly independent directions is implemented using a modified Gram- 
Schmidt algorithm, and usually results in p = 1 or 2. 

After the linearly independent past directions. sk, are selected, the tensor term is chosen to 
be the smallest matrix that satisfies the interpolation conditions (2.1), that is, 

where IITcllr;., the Frobenius norm of Tc is defined by 

(2.2) 

(2.3) 

The solution to (2.3) is the sum of p rank-one tensors whose horizontal faces are symmetric. 

where ak is the k-th column of -4 E Rrri('', .-I defined by .A = ZM'-l, 2 is an (n x p )  matrix 
whose columns arc Zj = 2 (F(z , j )  - F(.L',) - F'(z,)sj), and AI is a ( p  x p )  matrix defined 
by lLI( i , j )  = (s i= .s j )x .  1 5 i, j 5 p.  



Using the tensor term (2.4j, we obtain the tensor model 

l P  
M ( x c  + d )  = F[s,)  + F’(z,)d + - Uk (dTSk)?  

k=1 ‘2 (2.5) 

The simple form of the quadratic term in (2.5) is the key to being able to efficiently form, store, 
and solve the tensor model. For dense problems, the cost of forming the tensor term in the tensor 
model is O(n2p) 5 O(n2e5) arithmetic operations, since p 5 6. The leading term comes from 
the p matrix-vector products F‘(2,)sk. The nest most significant cost is the O(np2) operations 
required to calculate A = Zhl-l, and the O(np2) cost of the Gram-Schmidt orthogonalization. 
The additional storage required is 411 n-vectors. 

Once the tensor model (2.5) is formed, a root of the tensor model is found. It is possible 
that no root exists; in this case a least squares solution of the model is found instead. Thus, in 
general, the problem 

find d E R” that minimizes 11 M(zc + d )  112 (2.6) 

is solved. Schnabel and Frank [‘lo] show that the solution to (2.G) can be reduced to the solution 
of q quadratic equations in p unknowns (i.e., a very small system of quadratics), plus the solution 
of n - 4 linear equations in n - p unknowns. Here (I is equal to p whenever F”(zc) is nonsingular 
and usually when rank(F’(2,)) 2 n - p ,  and q is greater than p otherwise. In the dense case, 
the main steps of the algorithm used to solve (‘2.6) are the following: 

1. An orthogonal transformation of the variable space is used to cause the n equations in n 
unknowns to be linear in n - p variables, dl E Rn-p, and quadratic only in the remaining 
p variables, 2, E RP. 

2. An orthogonal transformation of the equations is used to eliminate the n - p transformed 
linear variables from n-q of the equations. The result is a system of q quadratic equations 
in the p unknowns, I&, plus a system of I I  - q equations in all the variables that is linear 
in the n - p unknowns, ci,. 

3. :A nonlinear unconstrained optimization software package, UNCMIN [XI, is used to min- 
imize the 12 norm of the q quadratic equations in the 11 unknowns. d?. (If p = 1, this is 
done analytically instead.) 

4. The system of 71 - q linear equations that is linear in the remaining n - p unknowns is 
solved for d l .  

An advantage of this algorithm is that it dficiently and stably solves (2.G), whether or not the 
tensor model has a root or the Jacobian is nonsingular. 

In the dense case, the arithmetic cost per iteration of the above algorithm is the standard 
O ( n 3 )  cost of a matris factorization. p l w  ail additional O ( n 2 p )  ( 5  O(n205)) operations for the 
orthogonal transformations, plus the cost of using UNCMI?i [21] in step 3 of the algorithm. 
The cost of using U N C M I N  is cspectctl to be O(p-’) 5 O ( n 2 )  operations. since each iteration 
requires O($) opcrations (O(p”q)  wlten q > p )  and a small multiple o f p  iterations generally 



suffice. Thus, the total cost of tlie above algorithm is the O(n3)  cost of Newton’s method plus 
at most an additional cost of O(n”’) arithmetic operations. The Newton step is computed 
inexpensively (in O(n2p)  5 O(n2-’) operations) as a by-product of the tensor step solution. 

An iteration of the tensor method is summarized in Algorithm 2.1 below. For more details 
on tensor methods, including the global strategy used in step 5 of Algorithm 2.1, see Schnabel 
and Frank [20] and Bouaricha and Schnabel [3]. 

Algorithm 2.1. An Iteration o f  the Tensor Method for Dense Nonlinear Equations 

Given n, current iterate c,, F(I,)  

1. Calculate F‘(z,), and decide whether to  stop. If not: 

2. Select the past points to  use in the tensor model from among the ,/Z most recent points. 

3. Calculate the second-order term of the tensor model, T,, so that the tensor model interpolates 
F(z) at al l  the points selected in Step 2. 

4. Find the root o f  the tensor model, or its minimizer (in the I:! norm) if it has no real root. 

5. Select the next iterate z+ using either a line search global strategy or a two-dimensional trust 
region method. 

6. Set I, - z+, F ( z c )  - F(z+); go to Step 1. 

Now consider applying Algorithm 2.1 to large sparse systems of nonlinear equations. The 
leading costs of the tensor model formation are p Jacobian-vector products, to form F’(z,)sk; 
n solutions of a dense p x p system of linear equations with the same p x p matrix ill to form 
A: and a Gram-Schmidt orthogonalization of p n-vectors. Thus, as long as p is restricted to 
being less than or equal to a very small integer (rather than p 5 Jii as for dense problems), 
these costs are small for large sparse problems: the p .Jacobian-vector products can be calculated 
efficiently utilizing the sparsity of the .Jacobian, arid the remaining costs total a small multiple 
of n operations. Since dense tensor methods generally choose p = 1 or 2 anyhow, even when ,/E 
is considerably larger, the restriction on the size of p is not a problem. In fact, our test software 
will be seen to use p = 1 because larger values did not improve its performance. 

The procedure for solving the tensor model in the dense case, however, does not adapt to large 
sparse problems. The first step of this process, the orthogonal transformation of the variable 
space, is crucial to this approach and would destroy tlie sparsity of the Jacobian, making the 
remaining steps have an O(n3) cost even if the .Jacobian had been sparse. Therefore, if tensor 
methods are to be applied to large sparse problems, an entirely different method for solving the 
tensor model is needed. This is developed in Section 4. 

3. Sparse Finite-Difference Jacobian Approximation 

One of the important advances in the solution of large sparse systems of nonlinear equations 
feasible has been the developnient of efficient techniques for approsimating sparse Jacobian 



matrices by finite differences. These techniques allow the Jacobian to be approsimated using 
far fewer additional evaluations of P ( x )  than in the dense case. Since we use one such technique 
in our test software, we review this approach very briefly in this section. 

For dense nonlinear equations, finite difference methods approximate each column j of the * 

Jacobian matrix by 

where ej is the j - th  unit vector, and h j  is a small number. X typical value of hj is ,/F 
maa:{l s c ( j )  I, typz(j)} sign(zc(j)), where v represents the relative error in computing F(s ) ,  
and t y p z ( j )  > 0 is a typical size of z, provided by the user. A value of Y equal to machine 
epsilon is appropriate when F(z) is computed to full machine precision. Hence, the Jacobian 
approximation for dense nonlinear equations requires n evaluations of F ( z )  in addition to F(zc) .  

For large sparse nonlinear equations, the number of evaluations of F ( z )  needed to estimate 
the Jacobian matrix by finite differences usually can be reduced considerably. (We assume here 
that the entire vector F(x) must be evaluated at once, i.e., that the cost of evaluating F ( s )  is 
considerably less than evaluating each fi[;c) separately.) The basic approach for accomplishing 
this task originated with the work of Curtis. Powell, and Reid [SI. Their algorithm, the CPR 
algorithm, partitions the columns of the .Jacobian matrix into q sets, C1, Cz, ..., C,, with the 
property that if two columns are in the same partition, then they do not have a nonzero in the 
same row. Given this partition, one can chose (I differencing vectors, dk = CjEck hjej, and 
evaluate F ( z )  q times at (z, + &), k = 1, ..., q.  For each nonzero row i of column j E Ck, 
one can then approsimate J(z); j  by 

(3.2) 

The choice of the partition {Ck} is crucial to the efficiency of the CPR algorithm. Unfortu- 
nately, there docs not seem be a n  efficient way to obtain the guaranteed best partition, and hence 
the smallest number of function evaluations. for a general sparse Jacobian matrix. Research by 
Coleman and Mor6 [7] provided a tiew approach by showing that the choice of the sets in the 
CPR algorithm can be viewed as a graph coloring algorithm. They showed that a coloring of the 
intersection graph C( .-LTA) generates a colunin partition with the CPR property. Using this, 
they often are able to improve sigliificalitly upon the heuristic used by Curtis, Po\vell, and Reid 
and often find partitions that arc within two function evaluations of the trivial lower bound on 
the number of sets, which is the masimiim nulnber of nonzeros in any row. Software for their 
approach is provided in [5, 61: and we have used this software in our test code. 

4. Solving the Tensor Model When the Jacobian Is Sparse 

As motivated in Scction 2, the key challenge in developing an efficient tensor method for large 
sparse systems of nonlinear equations is to construct a n  efficient algorithm for finding a root of 
the tensor model (2.5) when the Jacobian riiatris is large and sparse. That is, 

Find d E A” such that 
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l P  
,\f(zc+ d)  = f'(sc) f FF'(zc)d f - ak {dTsk}' = 0, (4.1) 

R = l  2 

where F'(s,) is large and sparse. We give such an algorithm in this section. We show that 
the solution of (4.1) can be reduced to the solution of a system of p quadratic equations in p 
unknowns, plus the solution of p +  1 systems of linear equations that d involve the same matrix. 
This matrix is either .J(sc) if it is nonsingular and well conditioned, or J ( s c )  au-pented by p 
dense rows and columns if J(.cc) is singular or ill-conditioned. We also show that our algorithm 
efficiently solves the generalization of (4.1), 

find d E R" that minimizes 11 M(zc + d )  112. (4.2) 

The basic approach used in all these cases is illustrated by the case when the Jacobian 
matrix is nonsingular and the tensor model has a root. In this case, premultiplying (4.1) by 
s ; ~ . J - ' ,  i = 1, . . . ,p,  gives the p quadratic equations in the p unknowns pi = siTd, 

(Here and in the remainder of this section, we let F denote F(zc) and J denote FF'(zc).j These 
equations can be solved for B;;i = 1, ...,p, and then from (4.1) the equation 

can be solved for d. The entire process requires the solution of p+ 1 systems of linear equations in 
the matris J to coriipute J - ' F  and J - l u k .  k = 1. ..., p (or, alternatively, J- l (F+ $E",=, 
and J - T S j ,  i = 1. ...,p) and the solution of the sniall system of quadratics (4.3). 

4.1. Solving t h e  Spa r se  Tensor Model W h e n  the Jacobian Is Nonsingular 

The preceding paragraph indicated how to solve (4.2) efficiently when the Jacobian matrix is 
nonsingular and the tensor model has a root. Sow we address the more general problem of 
solving (1.2) efficiently whether or not the model has a root, when the Jacobian matrix is 
nonsingular. We do this by considering the equivalent minimization problem to (4.2), 

where Q is an n x n orthogonal matrix that lias the structure 



2 E 3nx(n--p) is an orthonormal basis for the orthogonal complement 
of the subspace spanned by the columns of J-TS.  

Note that ZTJ-TS = 0. If we define PV = [ST(JTJ)- 'S] ,  ,8 = STd, and 

q(p) = s ~ , J - ~ F  + fi  + 5s I T  . J - ' A ~ ~ ,  

where d2 denotes the vector in X P  whose i-th component is (,&I2, then 

(4.3) 

The following lemma is the key to showing that (4.4) can be solved efficiently through (4.5). 

Lemma 4.1. For any j3 E 3P, there exists a d E 3In such that Z T M ( s C  + d )  = 0 and STd = p.  
Proof. Let 

d = (JT.J)-'SPV''/3 + J-'Z t ,  

where t is arbitrary vector E 3 P - P .  Then 

STd= S"(J*J)-'S~V-l,8 + STJ--'Z t = p ,  
from the definitions of JV and 2, and 

Z T : l f ( x c +  d )  = Z T F  + ZTJ[(JTJ)- 'SW-l,O + J- 'Z t] + $zTAP2 

= Z T F  + t + W * 4 $ 2 .  2 

Thus the choice 

in (,4.G) yields a value of d for which ZTill(a, + d )  = 0 and STd = ,3 are both satisfied.U 
Since for any 3 ,  we are able to find a step (1 such that ZTJf(zc + d)  = 0 and STd = ,3, 

Lemma 4.1 and (4.5) show that problem (4.4) can be reduced to the minimization problem in p 
variables 

(4.7) 

Furthermore, once the value of ,d that solves (4.7) is determined, we can obtain the solution d 
to (4.4) efficiently as follows. From (4.5) and Lemma 4.1. (1, must satisfy 

= vr.v-fq(p). 
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From this equation and the definition of CJ we have 

1 P +  Jd= + 5Ag2 = J-TSW-lq(P) 

and, hence, 
1 

d, = -J-'[ I? + -A,@ 2 - J-TSW-'q(/3)]. (4.8) 

Therefore, once we know ;3, we simply calculate the value of (I(@) and substitute these two values 
into Equation (4.8) to  obtain tlie vdue of d,. 

Now we can give the implementation that we use to solve (4.2). 

Algorithm 4.2. Solving the Sparse Tensor Model When J Is Nonsingular 

Let J E Rnxn be sparse, F E R", S ,  A E Rnxp. 

1. Form the q ( P )  equations (4.5) by calculating J-TS as follows: factor J and solve J T y j  = 
s j , j  = 1 ,..., p .  

2. Form the positive definite matrix I+- E RPXP, where FVij = [ s ; ~ ( J ~ J ) - ' s ~ ] ,  1 5 i , j  5 p ,  as 
foIiows: Wij = ( J -  T T  si) ( J - T s j )  = u; T yj. 

3. Perform a Cholesky decomposition of IV (Le. I V  = LLT)  resulting in L E RPXP, a lower 
triangular matrix. 

4. Use UNCMJN ([21]), an unconstrained minimization software package, to solve 

or solve (4.9) in closed form if p = 1. 

5. Substitute the values of ,d and &?) into 

(4.10) 

to obtain the tensor step (1; this involves one additional solve, since the factorization of J is 
already calculated. 

1 
d = - P ( F  + T;.-1$2 - .J-Tstv-'q(9)) 

Ld 

The total cost of this process is the factorization of the sparse matrix J ,  p + 1 backsolves 
using this factorization. the unconstrained minimization of a function of p variables, and some 
lower-order (0( n)) costs. 

4.2. Solving the Sparse Tensor Model When the Jacobian Is Rank Deficient 

In this section we show that if the Jacobian matrix is rank deficient, we can solve the tensor 
model by building upon the process just described. The basis for our approach is to transform 
the tensor model given in (4.1) as follows. Let d = d^ + 6 and p = ST for some fixed step 

10 
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6, where S is the new unknown. (We comment on the choice of 6 later.) Substituting d +  S for 
d into the tensor model (4.1) yields the following model, which becomes a function of 6: 

1 
w z c  + 6 )  = F(&) + .J(zc)(c2+6) + ,A{ST(d+ S)}? (4.11) 

This is equivalent to 

(4.12) 
I 1 

i W ( Z c  + S) = F ( z ~ )  + J ( ~ , ) J  + ~ A { s ~ J } ~  + J ( . x , )~  + - A . D ~ S ~ S  + Z A { S ~ S } ~ ,  

where D,j = d iag(p ) .  If we let &(zc) = P(zc)+J(r,)6+3A{STd^}2, and j(zc) = J(zc)+A.D~ST, 
and recall that d and ,8 are constants, then (4.12) is the modified tensor model 

&1(zc + 6 )  = E(&) + j(z,)S + ,d{S T 2  S} . (4.13) 

The advantage of this transformation is that, as is shown below, the matrix j is very likely to 
be nonsingular if rank(J) 3 n - p .  If so, we can solve (4.2) by applying the techniques of Section 
4.1 to minimize Il$f(zC + 6)ll. X necessary and sufficient condition for j to be nonsingular is 
given in Lemma 4.3. [Presumably this lemma is widely known, but since its proof is so simple 
and introduces an augmented matris that is used in our subsequent algorithm development, we 
give it here.) We use A to stand for ADS. Following Lemma 4.3 we present several results that 
give more insight into the conditions under which J + AST is nonsingular. 

The apparent disadvantage of the transformed problem (4.13) is that the matrix j is dense. 
But since .i is the sum of a sparse matrix and a very low rank matrix, we can solve linear 
systems involving .j nearly as efficiently as systems involving J. We review how this is done 
shortly following Lemma 4.G. 

Lemma 4.3. Let J E WX", 2, S E X h X P .  Then J + .,IST is nonsin,dar if and only if 

is nonsingular. 
Prooj. We prove that there exists 'u E X", u f 0: for which ( J  + .3ST)v = 0, if and only if there 
exist E Z", u) E :J2, for which 

0 

(0 11_1 0 

11 

(4.14) 
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Suppose first that (J f AST)u  = 0,v + 0. Then for ij = .u;w = STv, (.E,w) satisfies (4.14). 
Conversely, if there esists ( a ,w)  satisfying (4.14), then ST5 = 20, so (J + aST)5  = 0. Also 
ij f 0; otherwise, 'w = 0 too? which contradicts (4.14). Thus (J + AST) is nonsin,dar if and 
only if is nonsingular. 0 

CorolIary 4.4. Let J E 3PX", S E V. If (J + AST) is nonsingdar, then [ J A ] and 

[ JT S ] have full row rank. 
Proof. Follows from Lemma 4.3. 0 

Lemma 4.5. Let J E PXn, rank(J) = n - p ,  S E P"'p. Then (J + AST) is nonsingular if and 
only if [ J A ] and [ JT S ] have full row rank. 

Proof. The onZy if part follows from Corollary 4.4. Now assume [ J A ] and [ JT S ] have 
full row rank. Since J has rank n - p ,  -1 = J1 J;, where J1, J2 E 32nx(n-p) have full column rank. 
Since [ J A ] has full row rank, 

' 

(,uTJ = 0 and vT.? = 0) + v = 0. 

Now from J = . 1 1 J 2 ~  and the fact that J 2  lias full column rank, (4.15) is equivalent to 

( u T ~ l  = o and J - 3  = 0) =+ v = 0. 

(4.15) 

Thus the n x n matrix [ Jz A ] is nonsingular. -Analogously, the n x n matrix [ J 2  S ] is 
nonsingular. Therefore 

is nonsingular. CI 

If rank(J) + rank(xST) > n, then it is possible that [ J A ] and [ J ST ] have full 
rank, but J + .?ST is singular. For example1 consider p = 1, J = 1, A = -e i ,  and S = ei. 
e; the i-th unit vector. Then 

- 

(4.16) 

although [ J ] and [ J T  S ] have full row rank. Lemma 4.6 gives a slightly stronger 
condition that guarantees (J+ .-IST) is nonsingular. Let C{G} and R{G} denote the subspaces 
spanned by the columns and rows of the itiatris G, respectively. 

12 
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Lemma 4.6. Let J E Rnx" be rank deficient, 2, S E Rnxp, and [ J A ] and [ JT S ] 
have full row rank. If C{ J) II C{A)  = 0 and A has full column rank, or R{J)  n R{ST) = 0 
and S has full column rank. then ( J  + AST) is nonsingular. 
Proof. Note that 

C { J }  n C{A} = 8 * (Jv + AW = 0 e J.v = 0 and AW = 0). 

Thus 

since A has full column rank. Hence, 

( J t  AST)v = 0, D # 0 + Jv = Oand-x(STu) = 0 * Jv = OandSTv = 0, (4.17) 

which contradicts the hypothesis that [ J T  S ] has full row rank. An analogous proof holds 
for the case when R { J }  n R{ST} = 0 and S has full column rank. 0 

Since the values in S and 2 are not functions of the values in J ,  and S always has full column 
rank, it is very likely that the conditions of Lemma 4.G will be satisfied a t  any iterate where J 
is singular but has rank a t  least n - p .  Thus in practice, j is very likely to be nonsingular if 
rank(J) 2 n - p .  

Now we can give an efficient algorithm for solving the tensor model when j is singular. 
Conceptually, we apply Algorithm -4.2 to (4.13) to obtain the value of 6. Then we obtain the 
tensor step by adding the value of 6 to tlie fised step d. 

is a dense matris, we use an au,mented matrix approach 
involving the matris M defined in Lemma 4.3 to solve the required linear systems involving 9. 
That is. we write (.I + .4D,jST) 2 = 6 as 

However, since j = J + 

(4.15) 

Since J is sparse. the ( n  + p )  x ( n  -k p )  matris in (4.18) is sparse except for its last p rows and 
columns. and can he factored efficiently as long as tlie last p rows and columns are not selected 
as pivots until the last several iterations. In fact. we can combine the nonsin,dar and singular 
cases by beginning with factoring J ,  but shifting to a factorization of the augmented ma t rh  if J 
is discovered during the factorization to be singular or ill-conditioned. An implementation using 
this approach and a sparse matrix solver is discussed in Section 6. Since p is very small ( p  = 1 
in our tests), the factorization of the augmented matrix costs hardly more than factoring J .  

A remaining consideration is the choice of d in the linear transformation of the variables that 
underlies this approach. The goal is for (.I + ..ID$'r) to be nonsingular and well-conditioned. 
Basically, alniost any nonzero d is equally likely to accomplish this, as long as its scale does 
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not lead to scaling problems. In our implementation we set 2 to the step taken in the previous 
iteration, simply because it has the right scale. 

Finally, we must address the case when j (or equivalently, the augmented matrix in (4.15)) 
still is singular. We have found that this case is very rare in practice, and so we have not 
developed a procedure for solving the tensor model in this case. Rather, our code will use the 
singular Newton step described in Section 5 as the step direction for the current iteration if the 
factorization of the augmented matrix in (4.18) reveals that this matrix is singular. 

An implementation of the algorithm that we use to solve the tensor model when the Jacobian 
is rank deficient, as well as when it is nonsingular, is given in Algorithm 4.7. 

Algorithm 4.7. Solving the Sparse Tensor Model 

Let J 

1. 

2. 

3. 

4. 

E Rnxn be sparse, A, S E Rnxp. 

Form the matrix A D j ,  where 2 is the step computed in the previous iteration, p = STd, and 
DB = diag(fi) .  Then construct the augmented matrix AI E R(nfp)x(nfp) as follows: 

(4.19) 

Begin the factorization of dJ, pivoting in rows and columns n + 1, ..., n + p only if J is 
(numerically) singular. If J is nonsingular, perform Algorithm 4.2 on the tensor model (4.1). 

If J is singular b u t  &I is nonsingular, then perform Algorithm 4.2 on the tensor model i<I(s,+ 
6) = F(,) f j( s,)S+ $A{S'Ti?}2, where p(zC) = F ( z c )  + J(zC@+ ~ A { S T d } 2  and j ( sc )  = 
J(z,) + A D j S T ,  and any required value of the form r = .i-'b or t = j - T b  is found by solving 
the augmented system (4.18) or the analogous transposed system for z. Then set d = d+  6. 
I f  &I is singular, use the singular Newton step calculated in Section 5 instead of the tensor 
step. 

The arithmetic cost per iteration of Xlgorithm -4.7 is the cost of a sparse matris factorization 
of the Jacobian J or the augmented matris -\I I plus the same costs discussed following Algorithm 
4.2: p f  1 back solves, plus the O ( p " )  cost of using UNCMIN [21] for solving the q ( p )  equations 
if p > 1, plus some O ( n )  costs. Thus the main additional cost in relation to Xewton's method 
again is p additional forward and back solves per iteration. 

5 .  Solving the Newton Model Along with the Sparse Tensor Model 

As in the dense case [20, 31, the global strategy that is used in our tensor method for sparse 
nonlinear equations sometimes utilizes the Newton step rather than the tensor step (see Section 
13). In the dense case, the Newton step can be computed inexpensively as a by-product of 
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computing the tensor step. In this section. we show that this computation can also be done in 
the large sparse case. 

If the Jacobian ma t rh  J is nonsingular, then the calculation of the tensor step described 
above produces a sparse LU factorization of J .  Ln this case, the Newton step is simply found 
by performing one additional pair of triangular solves to solve the system 

J d  = - F. (5.1) 

That is, since 
J = PiTLUF?zT, (5.2) 

where L E Rnxn is unit lower triangular, U E Rnxn is upper trian,dar, and .PI and P2 are row' 
and column permutation matrices, we first solve 

Lg= c (5.3) 

L i z =  y ( 5  A) 

for y, where y = URZTd and c = - PIP. Then we solve 

for 3, where z = 
perform the sparse mstris factorization and triangular solves. 

Therefore, we would like to solve the least squares problem 

P-Td. Finally d = Pl z. Our algorithm uses the hL.25 package [ll] to 

Otherwise the matris J is singular, so (5.1) has either zero or an infinite number of solutions. 

(5.3) 

The method that we use to solve the problein ( 5 . 5 )  is an estension of the method of Peters and 
Wlkinson [19] that was suggested by Bjorck and Duff [l]. This approach usually produces a 
better solution to (5.5) than the one obtained using the SIX'25 package. which sets the last r 
components of the solution z in (5.4) to 0, where r is the rank deficiency of J. In particular, 
on problems where singular or very nearly singular Jacobians are encountered, Newton-based 
methods using the step produced by the Bjorck and Duff method usually require fewer iterations 
than those using the step produced by &l/Ix'28. The remainder of this section reviews the method 
of Bjorck and Duff. 

The first step in the method of Bjorck sild Duff [I] is to compute an L U  factorization of the 
Jacobian mstris J ,  using Gaussian elimination with both row and column interchanges. This is 
equivalent to multiplying a permutation of J from the left by the product. G. of a sequence of 
elementary elimination matrices, to obtain 

GPl.JP2 = ( ) . (5.6) 

where PL,& are permutation matrices. and l j  is an T x n upper trapezoidal matris with 
T = -F ,  we ~ ( ~ 1 z l i (  J ) .  If we apply the same transformations to the right-hand side 6 = 
obtain 

(5.7) 
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where c E R' and e E Rn-r 
If we look at  this in terms of an LU decomposition of J, 

with L a unit lower trapezoidal n x r matrix, then we have 

P16= Lc + (0). 
Now if d, is any solution of the system 

UPzTd = C, 

(5.9) 

(5.10) 

the residual norm corresponding to it is given by 

Thus, if lle 112 < E ( E  some suitable tolerance), then d, is a solution to  (5.5) with a slightly 
perturbed right-hand side 6, and we can immediately accept d, as the solution to our problem 
at the cost of a simple forward elimination (5.7) and back substitution (5.10). 

However, if lle 112 is larger, we would like to solve the least squares problem using our initial 
decomposition (5.6) and (5.7). For an arbitrary d we have that 

is) Pi(Jd - 6 )  = LUPITd - LC - 

= L 3  - (;), 
where 

UPzTd= c + 3. 

(5.12) 

(3.13) 

Therefore, d is a least squares solution of ( 5 . 5 )  if it satisfies (5.1:3), where 3 is the solution of 

minimize 1 1  Ls - (3.14) 

This least squares problem can be solved rising the n + r x n + r augmented system matrix 



followed by the solution of (5.13) for d. IIere p is the residual of (5.14). We use the augmented 
system approach because it is an efficient method in terms of preservation of sparsity and 
accuracy. 

I-Ience, if 11 e 112 is larger than E? then d is the solution to (5.5) at the cost of one forward 
solve (5.7), one back solve (5.10), an LU factorization of the augmented matrix (5.15) followed 
by one forward and one backward solve using the resulting factors, and a back solve (5.13). 

An advantage of Bjorck and Duff's method is that (5.14) is used only to compute a correc- 
tion to the equations (-5.13). Hence, for problems with small residuals, this method should be 
reasonably stable, since any ill-conditioning in L will affect only the correction 3. Also, L is less 
likely than U to be ill-conditioned. Furthermore, since 

( J T J d =  - J T F )  j d T J T F  = - d T J T J d  5 0 ,  (5.16) 

the solution d to (5.5) is a descent direction unless J d  = 0, which would imply that J T F  = 0. 
Hence d is a descent direction unless we are at a root of F ( z )  or a critical point of !IF(.) 1122. 
The step produced by hIIA'2S when J is singular does not necessarily have this property. 

6. Implementation of Tensor Methods for Sparse Nonlinear Equations 

This section gives a complete high-level description of an iteration of the sparse tensor method 
for nonlinear equations that is used in our computational tests. This includes some more details 
about the sparse matrix factorization than were given in preceding sections, and a description 
of the global strategy. We present test results for this implementation in Section 7. 

As stated previously, the sparse linear equation solutions in our implementation use the 
SIA2S package [ll], a widely used package for solving large, sparse, unsymmetric systems of 
linear equations. Also, as mentioned previously, the implementation reported here uses only one 
past iterate at each iteration to form the tensor term T', Le. p = 1. We use only one past point 
because our tests indicated that no further improvements were obtained by allowing a larger 
number of past points. In addition, using p = 1 reduces the storage requirement and cost per 
iteration of the tensor method, and allows the tensor model to be solved in closed form and 
without using an unconstrained optimization package. The entire additional cost of an iteration 
of the tensor method with p = 1. in comparison with Xewton's method, is essentially one sparse 
matrix vector multiplication' of F'( xc) times a vector to form the tensor model, one additiona1 
iipper and lower triangular solve t.o solve tlie tensor model. and sometimes a second additional 
pair of triangular solves to calculate tlie Sewton step. Some parts of Algorithm 6.1 are still 
stated in  terms of arbitrary p ,  for generality. 

The global strategy that is used in our iniplernentation is a standard line search. In [3]. both 
line search and two-dimensional trust region strategies were used in tensor methods for small, 
dense systems of nonlinear equations. In the tests in that paper. both methods appeared to be 
equally robust, with tlie trust region method possibly having a small advantage in efficiency. 
We have used tlie line search in the sparse code, however. because of its s e a t e r  simplicity 
and because tlie two-dimensional trust region method requires two additional matrix-vector 
multiplications involving the Jacobian matrix. 

The line search strategy that w e  rise is identical to that developed and used in ['20] and 
131, so we review it only very briefly herc. If the full tensor step provides sufficient decrease 
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in l lF(z)]l ,  it is taken. Otherwise, line searches usually are conducted in both the tensor and 
Newton directions, resulting in two possible next iterates, and the point with the lower function 
value is chosen as the next iterate. (The extra cost of this dual line search strategy, usually one 
function evaluation per iteration, has proven empirically to be justified by the decrease in the 
number of iterations required.) However, if the tensor step is not a descent direction, or in the 
very rare case when the Jacobian matrix and the augmented matrix hl are both singular and 
no tensor step is calculated, the line search is based solely upon the Xewton direction. 

Algorithm 6.1. An Iteration o f  the Tensor Method for Sparse Nonlinear Equations 

Given current iterate zc, F ( z c )  I 

1. Calculate J = F’(zc) and decide whether to  stop. If not: 

2. Form the second-order term o f  the tensor model, T,, so that the tensor model interpolates 
F(z) a t  the most recent past point (i.e., p = 1). 

3. Factorize J using the MA28 software package [ll]. 

4. If J has full rank, then perform Algorithm 4.2 on the tensor model hl(z,+d) = F(zc)  + Jd+ 
3 1 E;=, ak(dTsk)’, t o  compute the tensor step dt and go to  Step 6. Else: 

4.1. Augment J by adding p rows and columns as follows (in this implementation, p = 1). In 
general, column k of A = ak, column b o f  S = sk, and D.3 = diag(s$d^), where d^ is the 
step computed in the previous iteration 

J AD,j 

ST I 

4.2. Complete the factorization o f  the augmented matrix i>I as follows. Let T denote the rank 

4.2.1. Update the lower left rectangular p x r submatrix, and the upper right rectangular 
T x p submatrix o f  the augmented matrix (6.1) using the multipliers stored in the L 
factor o f  the Ll i  factorization of  J .  

4.2.2. Factor the lower right square ( n  - r + p )  x (n - T + p )  submatrix o f  the augmented 
matrix (6.1) using the MA28 software package [ll]. 

4.2.3. Update the factorization of the entire augmented matrix (6.1) by combining the LU 
factorization o f  the submatrix in Step 4.2.2, the updated submatrices in Step 4.2.1, 
and the LU factorization of  J into one LU factorization of the augmented matrix 
(6.1). 

o f  J. 

5. If J was singular but the augmented matrix :\I has full rank, then perform Algorithm 4.2 on the 
tensor model :<l(zc + 6) = p(x,) + j6 + $A{ST6}2 ,  where &( 2,) = F ( z c )  + JJ+ $A{ S*d^}2, 
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j = J + .4D,jST, and d is the step computed in the previous iteration, t o  compute the step 

6. (Any required value of the form z = j - l b  or .i-T6 in Algorithm 4.2 is formed using the 
augmented system Ad.) Then set dt = d^+ 6 and go to  Step 6. Else: 

5.1. Calculate the Newton step dn from the LU factorization o f  J by the Bjorck and Duff [l] 

5.2. Select the next iterate z+ using line search Algorithm 6.2 outlined below, where dn is the 

method t o  find some solution to  rnindCRn llJd + Flj2. 

search direction, and go to  Step 7. 

6. Select the next iterate z+ using a line search global strategy as follows: 

6.1. If 2, + dt is acceptable, then set z+ = 2, + dt and go t o  Step 7. Else: 

6.2. Calculate the Newton step dn from the LU factorization o f  J (or as in Step 5.1 if J is 

6.3. If the tensor step is a descent direction, then calculate z i  = x, + Xdt for some X > 0, 

6.4. If IIF(xci;’)lla > ~ ~ F ( z ~ ) ~ ~ ~ ,  then z+ - z;, else z+ - 23. 

singular). Then calculate z3 = z, + Xd, for some X > 0, using Algorithm 6.2. 

using Algorithm 6.2. 

7. Set x, - x + , F ( x C )  - F(z+). Go to  Step 1. 

Algorithm 6.2. Standard Quadratic Backtracking Line Search 

Given z,, search direction d, g = .J(z,)TF(z,), and a = 

The sparse tensor code (and the Newton code) terminates successfully if the relative size of 
(z+-.tc) is less than rnacheps?, or IlF(x+)ll, is less than macheps?; it terminates unsuccessfully 
if the iteration limit is esceeded. If thc last global step fails to locate a point lower than,zc in 
the line search global strategy, or the relative size of J ( Z + ) ~ F ( Z + )  is less than machepsz,  the 
method stops and reports this condition; this may indicate either success or failure. 



7. Test Results 

This section describes the comparative testing of the sparse tensor method from Section 6 with 
an analogous implementation based upon a linear model (Newton’s method). The Newton’s 
method algorithm is identical to the tensor Algorithm 6.1 except that the tensor model is never 
formed or solved, and the next iterate a+ is calculated from a line search based solely on the 
Newton search direction d,. That is, it uses steps 1, 3, 6.2/5.1, and 7 of Algorithm 6.1. As in 
Algorithm 6.1, the .Jacobian matrix is factored at each iteration using’ the MA28 package, and 
if the Jacobian is singular, the search direction is calculated by the method of Bjorck and Duff. 

We tested these algorithms on a variety of nonsingular and singular problems. First we 
tested them on three sparse problems provided to us from Boeing Computer Services and used 
as test problems in [13]. These problems are described as follows: 
1. LTS : This problem discretizes the differential equations for the Linear Tangent Steering 
problem in Bryson and Ho [4]. This is the search problem formulation where the adjoint differ- 
ential equations are also discretized and an optimality condition is imposed. 
2. GRST : This problem discretizes the differential equations for a coast about a spherical earth. 
The problem is initialized on the equator in an orbit with inclination of 1.0 radians. A search 
problem is obtained by requiring that the vehicle be at  a given latitude at  the final time. There 
are two solutions for every desired final latitude that is less than the inclination in absolute value. 
There is a single solution if the final latitude is required to be greater than the inclination. 
3 .  LGNDR : The recurrence relation for the Legendre polynomials is used to generate a sparse 
system of nonlinear equations equivalent to finding the value of x at which the n-th Legendre 
degree polynomial is equal to 1. 

We then tested our methods on a system of sparse trigonometric equations from [ls] that 
have the form 

i = 1,2’ ...’ n, (7.1) 

where the matrices {a i j }  and { b i j }  have the same sparsity pattern as one another, including 
nonzeros on the diagonal, and { c i j }  has a different sparsity pattern. Each matrix is a band 
matrix consisting of a main diagonal and zero, one. or two superdiagonals and subdiagonals that 
are each distance two apart. The nonzero values are generated randomly in [0,1]. The solution 
components are generated randomly in [0, 11’ and the right-hand side vector d is calculated from 
the solution. For the starting iteratewe randomly perturb the components of the solution by 
adding or subtracting 0.1 from each. 

We also ran our methods on some sparse nonlinear equations problems in Mor& Garbow, 
and Ilillstrom [17]’ namely, the Broyden banded, the Broyden tridiagonal, and the variable- 
dimension test problems, and on the distillation column test problem from [16]. 

These problems all have nonsingular Jacobians at  the solution. Then we created singular test 
problems as proposed in Schnabel and Frank [‘20] by modifying these nonsingular test problems 
to the form 

P(x) = f y x )  - F’(.xi) A(,lTA)-f,lT ( z  - L), (7.2) 
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where F ( x )  is the standard nonsingular test function, 5. is its root, and A E Rnxk has full col- 
umn rank with 1 5 k 5 n. Hote that E(z) also has a root at 2, and rank(p(z,)) = n - rank(.-l). 
We used (7.2) to create two sets of sparse singular problems, with p(xc,) having rank n - 1 
and n - '2, respectively, by using the matrices A E Rnx* and Rnx2 whose columns are the unit 
vectors el ,  and {el, e z } ,  respectively. Note that these changes do not affect the sparsity pattern 
of the Jacobian, except possibly for the first and second diagonal elements. 

The dimensions of the test problems we ran ranged from n = 31 to n = 324, with s b  of 
the nine problems we used having dimension 300 or greater. For each test problem, we used 
several different starting guesses, generated by 

20 = 20 + const (20 - x,), (7.3) 

where const is an real number indicating how far the initial guess is from the solution, and x, 
is the solution resulting from running the problem with initial guess 20. Al l  our computations 
were performed on a San SPARCstation 2 computer in the Computer Science Department at  
the University of Colorado a t  Boulder, using double-precision arithmetic. 

Tables 7.1 through 7.9 summarize the performance of the sparse tensor and sparse New- 
ton methods on the test problems described above. Each table presents the test results for a 
nonsingular test problem and for its rank n - 1 and rank n - 2 singular versions. Columns 
"Better" and uWorse" represent the number of times the tensor method was better and worse, 
respectively, than the Newton's method by more than one iteration, over a l l  the starting points 
for the problem under consideration. The "Tie' column represents the number of times the 
tensor and Xewton methods required sithin one iteration of each other. The columns labeled 
"Average Ratio3 measure the efficiency of the tensor method against the Newton's method; for 
example, if the test set contained two problems for which the tensor method required 3 and 
.5 iterations, respectively, and the Newton's method 7 and 9 iterations, respectively, then the 
average ratio would be e = 0.30. The same measure is used for execution times and func- 
tion evaluations. These average ratios include only problems that were successfully solved by 
both methods. Problems that were solved by only one method are included in the "Better" and 
"CC'orse" columns. however, and the numbers of such problems are discussed below. We have 
excluded entirely from Tables 7.1-7.9 all cases where the tensor and Newton methods converge 
to different roots. or to the same root but not the singular root x, for a sin-dar problem. 

Table 7.10 presents the average iteration, execution time, and function evaluation ratios of 
the tensor method versus Newton's method for all of the rank n. n - 1. and n - 2 problems 
that are included in the average ratio statistics in Tables 7.1-7.9. The one exception is that we 
esclude the rank n - 2 versions of the Legendre problcnl (Table i . 3 )  from the last line in Table 
7.10 because in almost all cases, the tensor and Sewton methods converge to a different root. 
For the three cases where the EWO methods converged to the same root, the tensor method was 
dramatically more efficient than the Newton method. These results are so different from any of 
the others that it seemed best to eliminate tlicm from the summary statistics. Their inclusion 
would change the numbers in the last line of Tab!e 7.10 to 0.43, 0.51, and 0.43. 

On the basis of Tables 7.1 through i . l O 1  the following observations can be made. The tensor 
method virtually never is less efficient than Newton's method and usually is more efficient 
in terms of iterations, function evaluations. and esecution times. The improvement by the 
tensor method over Newton's method is sul>stantial, averaging about 50% in iterations, 40% 



in execution times, and 50% in function evaluations, if all problems are considered. For all 
the nonsingular problems, the improvement averages 40% in iterations, 28% in execution times, 
and 41% in function evaluations. For problems where P(L) has a small rank deficiency, the 
improvement is greater. It averages 56% in ‘iterations, 45% in execution times, and 46% in 
function evaluations for rank n - 1 problems, and S2% in iterations, 45% in execution times, 
and 52% in function evaluations for rank n - 2 problems. In the case of the rank n - 1 problems, 
this advantage is due in part to the tensor method achieving 3 step Q-order 9 convergence 
whereas the Newton’s method is linearly convergent ([12]). 

The tensor method also lias a substantial advantage in robustness in comparison to Newton’s 
method on this test set. Over all tlie test problems, 12 nonsingular problems, 11 rank n - 1 
problems, and 12 rank n - 2 problems were solved by the tensor and not by the Newton’s 
method. On the other hand, there were no problems that were solved by Newton’s method and 
not by the tensor method. 

Another important observation that can be made on the basis of Table 7.10 is that the average 
improvement of the tensor method over the Newton’s method in execution times is about 10% 
smaller than in iterations. This is primarily because a tensor iteration requires at least one 
more pair of triangular solves than a Newton iteration (two more if both the tensor and Newton 
directions are calculated), and one additional matris vector multiplication. The increased cost 
per iteration ranges from 12% on problems with relatively expensive function evaluations, like 
the LTS problem. to 57% on problems with very sparse Jacobians and inespensive function 
evaluations. like the Broyden tridiagonal problem. (Note that one esception is the rank n 
and n - 2 problems in Table 7.4. Here. the average esecution time improvement is about .5% 
more than the average iteration improvement. This is because the Newton’s method line search 
requires many nonunit steps on this problem, as is clearly indicated by the large improvement in 
function evaluations, and because function evaluations are expensive for the trigonometric test 
problem.) 

We examined our test results to obtain an esperimental indication of the local convergence 
behavior of tlie tensor method and Xewton’s method on problems where rank(F‘(z,)) = n - 1. 
Specifically, we esamined the sequence of ratios 

produced by the Sewton and tensor methods on problems with rank(F’(z,)) = n - 1. The 
ratios for a typical problem are given in Table 7.11. tn almost all cases the standard method 
eshibits local linear convergence with constant near 0.5, which is consistent with the theoretical 
analysis (see, e.g., [!I. 101). The local convergence rate of the tensor method is faster, with a 
typical final ratio of around 0.01. This final ratio might be smaller if analytic .Jacobians were 
used in combination with tighter stopping tolerances. A s  is anticipated in [E], the convergence 
usually seems to be one-step superlinear, although only a three-step Q-order $ result can be 
proven. 

Finally. we also tried, on most of the test problems, a variant of the tensor method that 
allows up to two past points to be used in the tensor model. There was almost no difference 
in terms of number of iterations or function evaluations. There was, however, an increase in 
esccution time by approsimately 10% to 20% when we allow two past points. This is due in 
part to the estra pair of triangular solves required per tensor iteration. 
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Overall, the size and consistency of the efficiency gains indicate that the tensor method may 
be preferable to the linear model based method for solving large sparse systems of nonlinear 
equations. The tensor method seems to obtain a surprisingly large improvement from a compar- 
atively small amount of additional information. In particular, the tensor method using only one 
past point seems to be more efficient than the tensor method using more than one past point 
from the viewpoints of execution time and storage. 

8. Summary and Future Work 

We have developed and tested an efficient tensor method for solving large sparse 'systems of 
nonlinear equations. The method, Like previous tensor methods for nonlinear equations? is 
based upon using a second-order model of the nonlinear equations at each iteration. The tensor 
model is formed in the same way as in the previous tensor method research for small, dense 
nonlinear equations ([20, 3]), as this approach still is efficient for large sparse problems. The 
solution of the tensor model, however, utilizes an entirely new approach. By using this new 
approach, we are able to make the main step of the tensor model solution procedure be a 
(sparse) factorization of the Jacobian matrix, which can be performed efficiently. In contrast, 
previous approaches for solving the tensor model required orthogonal transformations to the 
Jacobian matrix, which would destroy its sparsity, before performing a matrix factorization. 
In cases when the Jacobian matris is rank deficient, the matrix that is factored in the new 
approach is the Jacobian augmented by a few dense rows and columns. Again, this is efficient 
for large, sparse problems. The approach also allows a minimizer of the tensor model to be 
found efficiently if no root esists. 

In computational comparisons using an analogous code based on Newton's method, the 
tensor method is significantly more efficient in terms of iterations, function evaluations, and 
esecution times. The advantages of the tensor method are greater on singular problems than on 
nonsingular problems, but are large in both cases. averaging about 30% to 40% for nonsingular 
problems and about 45% to 55% for problem with small rank deficiencies. The tensor method 
code also solves considerably more problems successfully than the Newton's method code. The 
most effective tensor method uses a rank-one second-order term, in which the tensor model 
interpolates the function value at  just the previous iterate. The additional storage and arithmetic 
cost per iteration needed to use this tensor model are particularly small. 

N'e are continuing to refine and test the softivare corresponding to the methods described in 
this paper, and plan to make it generally available in the near future. K e  have also developed 
tensor methods for solving large, sparse nonlinear least squares problems. The issues involved 
are considerably different because of the different large sparse linear algebraic computations 
that are required. This work is described in [2] and in a forthcoming paper. Finally, research 
is ongoing in developing variants of tensor methods for solving very large systems of nonlinear 
equations that are based on iterative linear solvers such as Krylov subspace methods. 



Dimension Rank Tensor 
n F‘lz,) Better Worse Tie 

313 n. 12 2 3 
n - 1  11 0 0 
n - 2  1 0 0 -9 

Average Ratio-Tensor/Newton 
Iteration Time Feval 

0.78 0.90 0.84 
0.5.5 0.67 0.60 
0.62 0.68 0.65 

Dimension Rank Tensor Average Ratio-Tensor/Newton 
n F’(z,) Better Worse Tie Iteration Time Fevd 

324 n 2 0 5 0.52 0.63 0.52 
n - 1  14 0 0 0.48 0.57 0.51 
n - 2  14 0 1 0.46 0.53 0.43 

i 

Dimension Rank Tensor 
n F’(zl) Better Worse Tie 

.5 0 n 13 0 0 
n - 1  7 0 1 
n - 2  3 0 0 

24 

Average Ratio-Tensor /Newton 
iteration Time Feval 

0.36 1.02 0.86 
0.45 0.87 0.51 
0.10 0.1.5 0.10 

Dimension Rank Tensor 
n F’(z=) Better Worse Tie 
300 n 4 1 2 

n - 1  5 0 1 
n - 2  8 0 0 

Average Ratio-Tensor /Newton 
Iteration Time F e d  

0.40 0.:35 0.21 
0 Ai  0.47 0.31 
0.42 0.38 0.26 



Dimension Rank Tensor 
n F’(z*) Better Worse Tie 
300 n 11 0 0 

n-1 11 0 0 
n - 2  11 0 0 

Average Ratio-Tensor /Newton 
Iteration Time F e d  

0.s1 0.95 0.53 
0.69 0.81 0.G9 
0.G6 0.77 0.634 

Dimension 
n 

300 

Rank Tensor Average Ratio-Tensor /Newton 
F‘(z,) Better Worse Tie Iteration Time Feval 

n 11 0 0 0.30 0.48 0.35 
n - 1  11 0 0 0 2 3  0.36 0.27 
n - 2  11 0 0 0.31 0.47 0.50 

25 

Dimension Rank Tensor 
n F’(z,,) Better Worse Tie 

300 n 11 0 0 
n - 1  11 0 0 
n - 2  10 0 0 

Average Ratio-Tensor /Newton 
Iteration Time Feval 
0.363 0.39 0.38 
0.38 0.40 0.39 
0.34 0.36 0.35 

Dimension Rank Tensor 
n F’(zx) Better Worse Tie 

3 1 n 5 0 10 
n - 1  4 0 0 
n - 2  8 0 0 

-4verage Ratio-Tensor /Newton 
Iteration Time Feval 
0.93 1.16 0.93 
0.43 0 A S  0.40 
0.53 O.GG 0.53 



Dimension Rank Tensor 
n P(s*) Better Worse Tie 
99 n 3 0 4 

n - 1  6 0 0 
n - 2  5 0 0 

Rank Tensor 

0.55 0.44 
n - 2  0.55 

Average Ratio-Tensor /Newton 
Iteration Time F e d  

0.45 0.61 0.44 
0.31 0.34 0.31 
0.50 0.60 0.49 

Table 11: Speed of Convergence on the LTS Problem (n = 313)’ modified by (7.2) to have 
rank(p’(s,)) = n - 1, started from q,. The ratios in the second and third columns are defined 

Iteration (k) Tensor Method 

3 0.9789 
4 0.9511 
3 0.0809 
6 0.3710 
7 0.9362 
8 0.9’207 
9 0.8’209 
10 0.49% 
11 0 ..5.573 
12 0.3450 

0.6667 13 
14 0.1131 
15 0.1104 

.... 

- 

by (7.4) 
Standard Method 

0.9789 
0.95 1 1 
0.9396 
0.0289 
0.8863 
02632 
0.4515 
0.6176 
0.4443 
0.6’730 
0.5756 
0.2224 
0.4119 

.... 
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Table 11: Speed of Convergence on the LTS Problem ( n  = 313), modified by (7.2) to have 
rank(#’(s,)) = n - 1, started from 2 0 .  The ratios in the second and third columns are defined . .. 
by (7.4) (continued) 

[teration ( I C )  
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

Tensor Method 
0.1233 
0.6085 
0.5505 
0.9529 
0.1571 
0.1032 
0.0440 
0.0095 

27 

Standard Method 
0.7639 
0.9472 
0.9474 
0.9476 
0.9477 
0.9478 
0.9480 
0.9481 
0.9482 
0.9483 
0.9484 
0.9477 
0.9445 
0.9409 
0.9367 
0.9317 
0.9258 
0.9187 
0.9100 
0.8989 
0.8846 
0.8654 
0.8390 
0.8013 
0.4967 
0.4996 
0.4998 
0.4999 
0.4999 
0.4999 

i 
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