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Abstract. Tensor methods for unconstrained optimization were first introduced by Schn- 
a b 4  and Chow P f A M  J .  Optimizution, 1 (1991),-pp. 293-3151, who describe these methods 
for small to  moderatesize problems. The major contribution of this paper is the extension of 
these methods to large, sparse unconstrained optimization problems. This extension r e q e e s  
an entirely new way of solving the tensor model that  makes the methods suitable for solving 
large, sparse optimization problems efficiently. W e  present test results for sets of problems where 
the Hessian at the  minimizer is nonsingular and where it is singular. These results show that  
tensor methods are significantly more efficient and more reliable than standard methods based 
on Xewton's method. 
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1. Introduction 

In this paper we describe tensor methods for solving the unconstrained optimization problem 

( 1 . 1 )  given f : R7I ---* R, find 2, E R" such that f(z,) 5 f (z)  for all z E D, 

where D is some open set containing x*. We assume that f is at  least twice continuously 
differentiable, and 7~ is large. 

Tensor methods for unconstrained optiinization are general-purpose methods primarily in- 
tended to improve upon the performance of standard methods, especially on problems where 
V2f(zx) has apall rank deficiency. They are also intended to be at  least as efficient as standard 
methods on problems where V2f( 2,) is nonsingular. 

Tensor methods for unconstrained optimization base each iteration upon the fourth-order 
model of the objective function f(z), 

where d E R", 5, is the current iterate, Vf(zc) and V2f(zc) are the first and second analytic 
derivatives off a t  z,, or finite difference approximations to them, and the tensor terms at  z,, 
T, E 3?'1x71x7a and V, E R'Lx7bx71x71, are symmetric. (We use the notation Vf(e,)-dfor Vf(zc)*d, 
and V2f(z,).d2 for dTV2f(z,)d to be consistent with the tensor notation T,.d3 and Vc-d4. Also, 
for simplicity, we abbreviate ternis of the form dd, ddd, and dddd by 8, d3, and d4,  respectively.) 
Before proceeding, we define the tensor notation used above. 
Definition 1.1. Let T E 917Lx7Lx71. Then for u, TI, w E Rn, T - uvw E 91, T - vw E R", with 

n n 71 

T - UVU'U' = y T( i, j ,  k)u( i)v(j)w( IC), 

71 t P  

( T '  vm)( i )  = c T ( Z , j , k ) V ( j ) U J ( k ) ,  i =>I  ,..., 71. 
j = 1  k=l 

Definition 1.2. Let V E 3?71X7LX7'X71 . Then for r,  u, v, 20 E R", V - ruvw E 8, V - uvw E 92" with 

T I  7l 71 

3=1 k=11=1 

The tensor terms are selected so that the model interpolates a small number of function and 
gradient values froin previous iterations. This results in T, and V, being low-rank tensors, which 
is crucial for the efficiency of the tensor method. The tensor method requires no inore function 
or  tleriyative evaluations per iteration and hardly more storage or arithmetic operations than 
does a stantlard method based on Newton's method. 

Stanclartl methods for solving unconstrained optimization probleiiis are widely described in 
the literature; general references on this topic include Dennis and Schnahel [9], Fletcher [ll], 



anti Gill, Murray, and Wright [13] .  In this paper, we propose extensions to standard methods 
that use analytic or finite-difference gradients and Hessians. 

The standard method for unconstrained optimization, Newton's method, bases each iteration 
upon the quadratic model of f(z), 

(1.3) 

This method is defined when V2f(zc) is nonsingular and consists of setting the next iterate z+ 
to the minimizer of ( 13), namely, 

'4 
"+ = 2, - v"("c)-'vf(zc). 

A distinguishing feature of Newton's method is that if V2f(z,) is nonsingular at  a local 
ininiiiiizer z,, then the sequence of iterates produced by (1.4) converges quadratically to. x*. 
However, Newton's method is generally linearly convergent at  best if V2f(z*) is singular [14]. 

Methods based on (1.2) have been shown to be more reliable and more efficient than standard 
methods on small to moderate-size problems [18]. In the test results obtained for both nonsin- 
gular and singular problems, the improvement by the tensor method over Newton's method is 
substantial, ranging from 30% to 50% in iterations and in function and derivative evaluations. 
Furthermore, the tensor method solves several problems that Newton's method fails to solve. 

The tensor dgorithiiis described in [18] are QR-based algorithms involving orthogonal trans- 
formations of the variable space. These algorithms are very effective for minimizing the tensor 
riiodel when the Hessian is dense because they are very stable numerically, especially when the 
-Hessian is singular. They are not efficient for sparse problems, however, because they destroy the 
sparsity of the Hessian due to the orthogonal transformation of the variable space. To preserve 
the sparsity of the Hessian, we have developed an entirely new way of solving the tensor model 
that employs a sparse variant of the Cholesky decomposition. This makes our new algorithms 
very well s u i t d  for sparse problems. 

The reiLiainder of this paper is organized as follows. In $2 we briefly review the techniques 
introduced by Schnabel and Chow [18] to form the tensor model. .In $3 we describe efficient 
algorithms for minimizing the tensor model when the Hessian is sparse. In $34 and 5 we dis- 
cuss the globally convergent modifications for tensor methods for large, sparse unconstrained 
optimization. These consist of line search backtracking and model trust region techniques. -4 
high-level irnplementation of the tensor method is given in $6. In $7 we describe comparative 
testing for a n  impleriientation based on the tensor method versus an implementation based on 
Xewton's method. and we present summary statistics of the test results. Finally, in $8, we give 
a suiiimary of our work and a discussion of future research. 

# 2. Forming the Tensor Model 

In this section, w e  briefly review the techniques that were introduced in [ l X ]  for forming the 
tensor iuodel for unconstrained optimization. 

As was stated in the preceding section, the tensor method for unconstrained optiiiiization 
I bases each iteration upon the fourth-order model of the nonlinear function f ( x )  given by (1.2). 
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The choices of T, and V, in (1.2) cause the third-order term T, - d3 and the fourth-order 
terixi V ,  - d" to have simple and useful forms. These tensor terms are selected so that the tensor 
inodel interpolates function and gradient information a t  a set of p not necessarily consecutive 
past iterates 2-1, ..., xeP .  

In the remainder of this paper, we restrict our attention to p = 1. The  reasons for this 
choice are that the performance of the tensor version that allows p 2 1 is siinilar overall to that 
constraining p to  be 1, and that the method is simpler and less expensive to  implement in this 
case. (The derivation of the third- and fourth-order tensor terms for p 2 1 is explained in detail 
in [IX].) 

The interpolation conditions at the past point 2-1 are given by 
' \  

-V2f(2,) 1 * S' + -Tc 1 - s3 + -Vc 1 * s4 
f(.-1) = f ( 4  + V f ( Z C ) . S  + 2 6 24 

and 

(2.1) 

(2.2) 

where 
s = 2 - 1  - 2,. 

Schnabel and Chow [18] choose Tc and V, to satisfy (2.1) and (2.2). They first show that 
the interpolation conditions (2.1) and (2.2) uniquely determine Tc s3 and V, - s4. Multiplying 
(2.2)-by s yields 

(2.3) 

Let a, [3 E 92 be defined by 
3 

4 

Q = T , - s  , 
/3 = v,.s . 

Then from (2.1) and (2.3) they obtain the following system of twb linear equations in the two 
unknowns a and [3: 

1 1 
2 6 -a + -[3 = q 1 ,  

1 1 
-a 6 + ,/3 24 = q . ,  

where q l ,  ql E 'fi are defined by 

(2.4) 

(2.5) 

1 2 q .  = f(z-1) - f(z,) - of(.,) . s  - -V2f(Zc) . s  . 2 
The system (2.4)-(2.5) is nonsingular; therefore the values of cr and /3 are uniquely determined. 
Hence, the interpolation conditions uniquely deterrxline T, . s3 and V, ' s4. Since these are the 
only interpolation conditions; the choice of T, and V, is vastly underdetermined. 
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Schnabel and Chow [la] choose T, and V, by first selecting the smallest symmetric V,, in the 
Frobenius norm, for which 

v, * s 4  = p, 
where p is determined by (2.4)-(2.5). Then they substitute this value of V, into (2.2), obtaining 

T, * s2 = a, 

where 

(2 .6)  

(2.7) 

This is a set of-n linear equations in n3 unknowns T,(i,j,k), 1 5 i , j , k  5 n. Finally, Schnabel 
and Chow [18] choose the smallest symmetric T, and V,, in the Frobenius norm, that satisfy the 
equations (2.6)-(2.7). That is, 

v, Egp min x n xn xn  II v c  llF (2.8) 

subject to  V, s4 = P ,  and V, is symmetric, 

and 

subject to T, - sz = a, and T, is symmetric. 

The solution to (2.8) is 

P v, = y ( s @ s % s @ s ) ,  y=- 
(ST44 ? 

where the tensor V, = s @ s oi, s @ s E g Z n x " x n x n  is called a fourth-order rank-one tensor for 
which Vc(i,j, k,Z) = s[i)s(j)s(k.).~(l), 1 5 i , j ,  k, 2 5 n. (We use the notation @ to be consistent 
with [18].) c 

The solution to (2.9) is 

(2.10) 

where the notation T = u @ v @ w, u, v, w E X", T E X n X n x "  , is called a third-order rank-one 
tensor for which T ( i , j , k )  = u( i )v ( j )u , (k ) .  Here b E R" is the unique vector for which (2.10) 
satisfies (2.6). It is given by 

3 a ( s T s )  - 2s(sTa) 
3(sTs)3  

b =  

T, and V, determined by the miniinum norm problems (2.9) and (2.8) have rank 2 and 1, 
respectively. This is the key to form, store, and solve the tensor model efficiently. The whole 
process of forming the tensor model requires only O ( n 2 )  arithmetic operations. The storage 
needed for forming and storing the tensor model is only a total of 6n. 

For further information we refer to [la]. 



I 
3. Solving the Tensor Model When the Hessian Is Sparse 

in this section we give algorithms for finding a minimizer of the tensor model (1.2) efficiently, 
when the Hessian is sparse. 

The substitution of the values of Tc and V, into (1.2) results in the tensor model 

As we stated in $2, we only consider the case p = I where the tensor model interpolates 
f(z) and V f ( i 1 a t  the previous iterate. The generalization for p 2 1 is fairly straightforward. 
This constraint is mainly motivated by our computational results. When we allow p 2 1, our 
test results showed almost no improvement over the case where p = 1.  The tensor method is 
therefore considerably simpler, as well as cheaper in terms of storage and cost per iteration. 

3.1. Case 1: The Hessian Is Nonsingular 

We show that the minimization of (3.1) can be reduced to the solution of a third-order polynomial 
in one unknown, plus the solution of three systems of linear equations that all involve the same 
coefficient matrix V2f(zc). For conciseness, we use the notation g = Vf(zc) and A = V2f(zc). 

A necessary condition for d to be a local minimizer of (3.1) is that  the derivative of the 
tensor inodel with respect to  d must be zero. That is, 

I T 2  ~ M T ( Z , +  d )  -= g + H d  + ( b T d ) ( s T d ) s  + z ( s  d )  b + I ( ~ ~ d ) ~ s  6 = 0, 

which yields 
d = - H - ' ( g  + ( b T d ) ( s T d ) s  + ,(s l T 2  d )  b + -(s 7 T 3  d )  s) .  (3.2) 2 6 

If we first preiriultiply the equation (3.2) by sT on both sides, we obtain a cubic equation (in /?) 
in the unknowns :3 = sTd and 8 = bTd,  

4 

(3.3) 1 

if we then premultiply the equation (3.2) by bT on both sides, we obtain another cubic equation 
{in p )  in the unknowns 13 and 8 ,  

1 b T H - ' g  + 8 + bTH--ls8P + -bTH-'b/ j2  + -b H-'s/ j3 = 0. 2 6 
Thus, we obtain a system of two cubic equations in the two unknowns [I and 0 which can be 
solved analytically. 

We now show how to cornpute the solutions of this system of two cubic equations in two 
iinknowns by coinputing the solutions of a single cubic equation in the unknown 13. Let u = 
s T H - ' g ,  u = s T H - ' b ,  w = s T H - ' s ,  y = bTH- 'g ,  and z = bTH-'b.  We first calculate the 
value of 8 as a function of [j using the equation (3.3): 

s T H - ' g  + /3 + sTH-'sO/3 + - sTH- lb / j2  2 + Z s T H - ' s / j 3  = 0. 

Y T  (3.4) 

1 6 

(3.5) 



Note. that the denoiiiinator 
13 # 0; otherwise the tensor 
(3.3) would be quadratic in 

of (3.5) is equal to zero if either p = 0 or w = 0. We assume that 
model would be reduced to the Newton model. Now, if w = 0, then 
io. Therefore 

-1 f Ji=-zE 
2 a =  

Thus, real-valued minimizers of the tensor model (3.1) may exist only if 1 - 2uv 2 0. It is easy 
to check that in order for 8 to have a defined value, 1 + vj3 cannot be zero. 
If {3 # 0 and w # 0, we substitute the expression for 9 into (3.4) and obtain .\ 

which is a third-order polynomial in the one unknown p. The -roots of (3.6) are computed 
analytically. We substitute the values of 0 into (3.5) to calculate the values of 8. Then we 
simply substitute the d u e s  of ,!? and 8 into (3.2) to obtain the values of d. The major cost in 
this whole process is the calculation of H - ' g ,  H-'b,  and H-'s. 

After we compute the values of d, we determine which of them are potential minimizers. 
Our criterion is to  select those values of d that guarantee that there is a descent path from 2, 
to z, + d for the model M T ( z ,  + d).  Then among the selected steps, we choose the one that 
is closest to the current iterate x, in the Euclidean norm sense. If the tensor model has no 
minimizer, we use the standard Newton step as the step direction for the current iteration. 

3.2. Case 2: The Hessian Is Rank Deficient 

If the Hessian matrix is rank deficient, we transform the tensor mode1 given in (3.1) by the 
following procedure. Let d = d +  6 for a fixed d, where 6 is the new unknown. Substituting this 
expression for d into (3.1) yields the following tensor model, which is a function of 6: 

(3.7) 

1 -. 7 7 3  - 7 If we let f i  = sTd, 6 = bTd,  g = Vf(xc) + V'f(z,)d + 6 f i . s  + 3 3 ' 6  + -d. s, c = bTd + 2, and 
h = V'f(c , )  + cssT, then we obtain the modified tensor Inodel 

2 6 

(3.8) 
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The advantage of this transformation is that the matrix k is likely to be nonsingular if the rank 
of (V2 f ( z , ) )  is a t  least n - 1 .  A necessary and sufficient condition for fi to be nonsingular is 
given in the following lemma. Let g and H denote V f(z,) and V2f(z,), respectively. 
Lemma 3.1. Let H E SnX", s E Sn. 

i s  nonsingular. 
CST - cr' 

H + cssT is nonsingular if and only i f  M = 

'\ 

(Note that the [ sT - I  ] submatrix was premultiplied by the constant c to symmetrize the 
augiiiented matrix M.)  
Proof. We prove that there exists v E Sn, v # 0, for which ( H  + cssT)v = 0, if and only if there 
exist ij E %*, w E SZ, for which 

Suppose first that ( H  + cssT)u = 0,v # 0. Then for G = - v , w  = sT;, (i j ,w) satisfies (3.9). 
Conversely, if there exists ( G ,  w) satisfying (3.9), then sTij = 20, so ( H  + cssT)ij = 0, and G # 0; 
otherwise, 20 = 0, which contradicts (3.9). Thus ( H  + cssT) is singular if and only if A4 is 
singular. 
Corollary 3.2. Let H E 3?'Lx'L, s E P. 

. 

I f  H + cssT is 7~onsingular, then [ H cs ] has full row rank. 

Proof, Follows from Lemma 3.1. 
Lemma 3.3. Let H E S Z ' r x n ,  rank(H) = 71 - 1, s E 8". 

H + cssT i s  nonsingular i f  and only  if [ H cs ] has full row rank. 

Proof. The only if part follows from Corollary 3.2.  Now assume [ H cs ] has full row rank. 
Since H has rank TL - 1, H = H I H T ,  where HI .  H L  E 9t71X(n-1) have full coluiiin rank. Since 
[ H cs ] has full row rank, 

( V ~ H  =  and 'U T s = 0 )  j 'U = 0. (3.10) 

From H = H I  H I T  and the fact that H2 has full colunin rank, (3.10) is equivalent to 

( u ~ H I  = o and vT, = 0 )  + v = O. 



Thus the 7~ x 71 matrix [ HI cs ] is nonsingular. Analogously, the 78 x 71 matrix [ H 2  s ] is 
nonsingular. Therefore 

is nonsingular. 0 

to  6 must be zero. That is, 

= 

For 6 to be a local iiiinirnizer of (3.8) the derivative of the tensor model (3.8) with respect 

'\ 

V M T ( S , $ ~ )  6 + 36 + ,8(sT6)b + / j (bT6)s  + ( s T 6 ) ( b T 6 ) s  

+ ( Z b  1 + $ , ~ s ) ( s  T 2  6) + $ ( s ~ ~ ) ~ s  = 0, (3.11) 

which yields 
6 = - f i - ' ( j  t p(sT6)b + b ( b T 6 ) s  + ( s T 6 ) ( b T 6 ) s  

7 -  T 2  7 T 3  1 + ( 2 6  + ,/3s)(s 2 6) + g(s 6) s). 
(3.12) 

Pretiiultiplying (3.12) by sT on both sides results in a cubic equation (in a )  in the two unknowns 
/j = sT6 and 9 = bT6: 

(3.13) 

The prernultiplication of (3.12) by bT on both sides yields another cubic equation (in 1)) in the 
two unknowns $ and 0: 

, 
bTf i - lG .  + (1 + f / 'bTH-'s)B + / jbTH-'b/3 + bTH-'.s/38 

(3.14) 

Therefore, we obtain a system of two cubic equations in the two unknowns 13 and 8, which we 
can solve analytically. 

Since (3 .13 )  is linear in 8, we can compute 8 as a function of 13 and then substitute its 
expression into (3.14) to  obtain an  equation in the one unknown /3 .  Let u = . sT f i - 'g ,  u = 
s T f i - ' b ,  UJ = sT f i - ' s ,  y = bTf i - ' i j ,  and z = bT8- 'b .  Equation (3.13) yields 

9 



(3.15) 

The denominator of (3.15) is equal to zero if either ,8 + /3 = 0 or w = 0. If 211 = 0, 
then (3.13) would be quadratic in /3 .  Therefore 

-(1 + bv) It d(l + $v)z - 22dv 
'\ 13 = 

V 

Hence, real-valued minimizers of the tensor model (3.8) may exist only if ( 1  + pv)" 2 2uv and 
# 0. It is straightforward to verify from (3.14) that for 0 to be defined (,d + 0). cannot equal 

-1. Now, if f i  + /3 = 0, then (3.13) reduces to  the following cubic equation in p: 

(3.16) 

Once we calculated the expressions for ,~3 from (3.16), we substitute them into the following 
equation for 8 obtained from (3.14): 

If neither f i  + [3 = 0 nor w = 0, we substitute the expression (3.15) into (3.14) and obtain 

- (u + 2/42) + j u v  + /32v2 + I )  + (yu, + p z w  - /3v - 2) - 

- hich is a third-order polynomial in the one unknown /3. The roots of (3.17) are then computed 
analytically. After we determine the values of /3, we substitute Ohem into (3.15) to calculate 
the corresponding values 'of 8. Then, we simply substitute the values of (3 and t9 into (3.12) to 
obtain the values of 6. The doininant cost in this whole process is the coinputation of &-'j, 
H-'b,  and &-Is. 

Siinilar to the nonsingular case, a minimizer 6 is selected such that there exists a descent 
path from the current point 2, to 2, + 6, and that S is closest to 2, in the Euclidean nortn sense. 

To obtain the tensor step d, we set d to $+  6. An appropriate choice of $ is the step used 
in the previous iteration simply because it has the right scale. 

To solve linear systems of the forin Biz = 6 ,  where fi = H + cssT, H E 9?'"7L sparse 
and s E Pt full, we use the augmented matrix .PI defined in Lemma 3.1. That is, we write 
( H  + cs.s )z = 6 as T 

10 
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The ( 7 ~  + 1) x (7i + 1) matrix in (3.18) is sparse and can be factored efficiently as long as the 
last row and column are not pivoted until the last few iterations. In fact, we can combine the 
nonsingular and singular cases by factoring H ,  but we shift to a factorization of the augmented 
matrix if H is discovered to be singular with rank n - 1. However, we use a Schur complement 
method to obtain the solution of the augmented matrix by updating the solution from the system 
H x  = b. This choice was motivated by the fact that the Schur complement niethod is simpler 
and more convenient to use than the factorization of the augmented matrix M .  We describe 
this updating scheme in 56. 

If the Schur complement iiiethod shows that M is rank deficient (a  case that is very rare in 
practice), or H- has rank less than 7i - 1, we use the standard Newton step as the step direction 
for the current iteration. 

4. Line Search Backtracking Techniques 

The line search global strategy we use in conjunction with our tensor method for large, sparse 
unconstrained optimization is similar to the one used for nonlinear equations [4, 61. This strat- 
egy has shown to be very successful for large, sparse systems of nonlinear equations. We also 
found that it is superior to the approach used by Schnabel and Chow [la]. The  main difference 
between the two approaches is that ours always tries the full tensor step first. If this provides 
enough decrease in the objective function, then we terminate; otherwise we find acceptable next 
iterates in both the Newton and tensor directions and select the one with the lower function 
value as the next iterate. Schnabel and Chow, on the other hand, always find acceptable next 
iterates in both the Newton and tensor directions and choose the one with the lower function 
value -as the next iterate. In practice, our approach almost always requires fewer function eval- 
uations while retaining the same efficiency in iteration numbers. The global framework for line 
search methods for unconstrained miniinization is given in Algorithm 4.1. 

Algorithm 4.1. Global Framework for Line Search Methods for ,Unconstrained Minimization 

Let zc he the current iterate, 
dt the tensor step, 
d,, is the Newton step, 
I! = of(.,), 
fc = f ( .c) ,  
slope = y T d t ,  
and CY = 

.r: = xc + dt 

if (iiiiniiiiizer of the tensor m o d ~ l  
f p  = f(+ 

if fp < fc + a .  slope t h e n  

e Ise 

t L+ = 2+ 

was found) then 

Find an acceptable 23 in the Newton direction d,, 
using Algorithm A6.3.1 [9, p.3251 
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Find an acceptable z i  in the tensor direction dt 
using Algorithm A6.3.1 [9, p.3251 
if f(z3) < f ( z i )  then 

else 

endif 

2+ = 2’; 

2+ = 2+ t 

endif 

Findhn acceptable 2; in the Newton direction d,, 
using Algorithm A6.3.1 [9, p.3251 

else 

”+ = x? 
endif 

5. Model Trust Region Techniques 

The two coixiputational methods-the locally constrained optimal (or “hook”) step and the 
dogleg step-are generally used for approximately solving the trust region problem based on the 
standard model. 

1 

subject to 11 d 112 5 6,, 

minimize f(z,) t Vf(z,) d + 5V2f(x,) - d2 (5.19) 

where 5, is the current trust region radius. When 6, is shorter than the Newton step, the 
locally constrained optimal step [16] finds a p, such that 11 d(pc) 112 M S,, where d(p , )  = 
-(G‘ff(z,) + pl)-’Vf(z,). Then it takes x+ = 2, + d ( p c ) .  The dogleg step is a modification 
of the trust region algorithm introduced by Powell [17]. However, rather than finding a point 
x+ = 2, + d(pc) on the curve d(p,)  such that 11 z+ - 2, 11 M S,, it approximates this curve by a 
piecewise linear function in the subspace spanned by the Newton step and the steepest descent 
direction -Vf(sc),  and takes x+ as the point on this approximation’for which 1 1  z+ - z, 1 1  = 6,. 
(See, e.g., [9] for more details.) 

Unfortunately. these two methods are hard to extend to the tensor model, which is a fourth- 
order niodel. Trust region algorithms based on (5.19) are well defined because it is always 
possihle to find a unique point z+ on the curve such that I /  z+ - z, 1 1  = 6,. Additionally, the 
value of f fz , )  +Vf(z , ) .d+  i V 2 f ( z c ) . d z  along the curve d(pL , )  is monotonically deueasing from 
zc to z;. where z; = xc + d,,, which inakes the process reasonable. These properties (10 not 
extend to the tensor model, which is a fourth-order model that may not be convex. Furthermore, 
the analogous curve to d ( p c )  is inore expensive to compute. For these reasons, we consider a 
different trust region approach for our tensor methods. 

The trust region approach that is discussed in this section is a two-dimensional trust region 
step over the subspace spanned by the steepest descent direction and the tensor (or standard) 
step. The main reasons that lead us to adopt this approach are that it is easy to construct, closely 
related to dop;leg type algorithms over the same subspace. This step may be close to optimal 
trust region step algorithixis in practice. Byrd, Schnahel, and Shultz [7] have shown that for 
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unconstrained optimization using a standard quadratic. model, the analogous two-dimensional 
iiiinimization approach produces nearly as much decrease in the quadratic model as the optimal 
trust region step in aliiiost all cases. 

The two-diniensional trust region approach for the tensor model computes an approximate 
solution to 

1 1 T 2  y T 4  minimize f(z,) + V f ( z c ) - d  + - V 2 f ( z c ) . d 2  + ;Z(bTd)(s  d )  + ~ ( s  d )  
2 

subject to 1 1  d 112 5 S,, 
by performing 'a two-dimensional minimization, 

where dt and gs are the tensor step and the steepest descent direction, respectively, and 6, is the 
trust region radius. This approach will always produce a step that reduces the quadratic model 
by a t  least as much as a dogleg-type algorithm, which reduces d to  a piecewise linear curve in 
the same subspace. At each iteration of the tensor algorithm, the trust region method either 
solves (5.20) or minimizes the standard linear model over the two-dimensional subspace spanned 
by the standard Newton step and the steepest descent direction. The decision of whether to  use 
the tensor .or standard inodel is made using the following criterion: 

if (no iiiiniiiiizer of the tensor iiiodel was found) or ( V f ( z c ) T d t  > -10-411 V f ( z c )  11211 dt 112) 

then 
-c+ = 5, + ad,, - [3gs; a,  /J selected by trust region algorithm 

else 
t+ = t, + a d t  - /3y,; a,  [' selected-by trust region algorithiii 

endif > 

Before we define the two-dimensional trust region step for tensor methods, we show how to 
convert the problem 

1 
2 

minimize f ( r , )  + Vf(z'.) . d + TV2f(z,)  . d 2  

subject to 1 1  d 112 = 6,, 

to a n  unconstrained rriiniiiiization proldem. 
First, we inake ys orthogonal to dt by perforrning the Householcler transforruation: 

(5.2 1 ) 

(5.22) 

then, we normalize both as and dt to obtain 
- 

(5 2 3 )  



- i s  
s s  = -- II i s  I I Z  (5.24) 

Since d is in the subspace spanned by the tensor step & and the steepest descent direction j s ,  
it can be written as 

d = + pgs, a,p E R. (5.25) 

If we square the 12 norm of this expression for d and set it to  b 2 ,  we obtain the following equation 
for (9 as a function of a 

Substituting t h  expression for /3 into (5.25) and then the resulting d into (5.21) yields the global 
minimization problem in the one variable a, given by (5.26) below. Thus, problems (5.26) and 
(5.21) are equivalent. Let ghg = #:Has ,  dhd = $ H a t ,  dh, = JTHGs,  bt = bT&, st = sT& 

p = d n .  
- 

b, = b T- gs, and sg = sTjs .  

minimize f(zc) + ;i6:ghg 1 + s 6 , s g  7 4 4  + (1 + b z b g i i ) J c  

+ (dhg + 7 2  - 6 , s t s g ) c r ~ ~  3 + (btsgst + b g s i  + btstsg 6 

where -6, < cr < 6,. 
To transform the probleiri 

(5.26) 

(527) 

to a n  unconstrained iriiniiliization problem, we use the same procedure described above to show 
that (T,.27) is equivalent to the following global iiiinimization problem in the one variable CY: 

1 1 
2 itiiniiriize f(.cc, + rS:g,Lg + 4- + d h g a  - 5glag)aZ. (5 .28)  

where -6, < cr < 6,. 

Algorithm 5.1. Two-Dimensional Trust Region for Tensor Methods 

Let dt  be the tensor step, 
d,, the standard step, 
2, the current iterate, 
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f c  = f ( 4 ,  

f+ = f(z+), 

9 c  = V f ( 4  
Hc = W(4, 

x+ the next iterate, 

gs = -Vf(zc), the steepest descent direction, 

and 6, the current trust region radius. 
&,ijs are given by (5.23) and (5.24), respectively. 

1. if tensor i&del selected then 

is obtained in an analogous way to &; by applying transforinations (5.22) and (5.23) to it. 
- 

Solve problem (5.26) using the procedure described in Algorithm 3.4 [6] 

Solve problem (5.28) using the procedure described in Algorithm 3.4 [6] 
else {standard Newton model selected} 

endif 

2. if tensor model selected then 
d = a,& -+ g s d G :  
where a, is the global ininiinizer of (5.26) 

d = a,& + g s d m  
where a, is the global iiiiniiiiizer of (5.28) 

else {standard Newton model selected} 

endif 
3. { Check neu i terate and update trust region radius.} 

the global step d is successful 

decrease trust region 
else > 

go to step 1 
endif 
where 

T 2  Y T 4  1 1 
2 2 24 

p ~ e : ( l  = (fc + gc d + TH, . d’ + ; ( b T d ) ( s  d )  f y ( s  d )  ) - fc, if t ensor  model selected, 
1 

pred  = ( fc + y, * d + 7 H ,  . d’) - fc ,  if standard Newton model selec.ted. 
2 

The methods used for adjusting the trust radius during and between steps are given in Algorithm 
A6.4.5 [9, p.3381. The initial trust radius can be supplied by the user; if not, it is set to the 
length of the initial Cauchy step. 

6. A High-Level Algorithm for the Tensor Method 

In this section, we present the overall algorithm for the tensor-niethod for large, sparse uncon- 
strained optiiiiization. Algorithm 6.1 is a high-level description of an iteration of the tensor 



method that was described in $S 3-5. A summary of the test results for this implenientation 
is presented in $7. 

Algorithm 6.1. An Iteration of the Tensor Method for Large, Sparse Unconstrained Opti- 
mization 

Let t, be the current iterate, 
dt the tensor step, 
a n d  d,, the Newton step. 

1. CalculatqVf(z,) and decide whether to stop. If not: 
2. Calculate V2f(zc). 
3. Calculate the terms T, and V, in the tensor model, so that the tensor model interpolates 

4. Find a potential minimizer dt of the tensor model (3.1). 
5.  Find an  acceptable next iterate z+ using either a line search or a two-dimensiond trust 

f(z) and Vf(z) a t  the past point. 

region global strategy. 
6. X, = x+, 

f ( 4  = f ( x + ) ,  
go to step 1. 

In step 1, the gradient is either computed analytically or approximated by the algorithm 
A5.6.3 given in Dennis aml Schnabel [9]. In step 2, the Hessian matrix is either calculated 
analytically or approximated by a graph coloring algorithm described in 181. Note that it is 
crucial to supply an analytic gradient if the finite difference Hessian matrix requires many 
gradient evaluations. Otherwise, the methods described in this paper may not be practical, and 
inexact type of uiethods tilay he preferable. The procedures for calculating T, and V, in step 
3 were discussed in $2. Step 4 calculates dt as described in §§3--4. The Newton step d,, is 
also computed as a by-product of the minimization of the tensor model. The Newton step d, 
is the inodified Yewton step (V2f(zc) + p I ) - ' V f ( s , ) ,  where p = 8 if V2f(zc) is safely positive 
definite, and p > 0 otherwise. To obtain the perturbation p, we use a modification of MA27 [lo] 
advocated by Gill, Murray, Ponceleon, and Saunders in [12]. In this method.we first conipute the 
LDLT of the Hessian matrix using the MA27 package, then change the block diagonal matrix 
D to D + E .  The niodified inatrix is block diagonal-positive definite. This guarantees that the 
deconiposition L(  D + E ) L T  is positive definite as well. Note that the Hessian matrix is not 
iiiotlifietl if it is already positive definite. 

The tensor and Newton algorithms terminate if 11 of(.,) 112 5 lo-" or 1 1  d 112 < lo-'. 
Another iriiplementation issue that deserves some attention is how to find a solution to the 

augmented system (3.18) when the Hessian matrix is rank deficient. To do this, we use a Schur 
complement method to update the solution z obtained from solving Hz = b.  This requires 
that H must have full rank.  Thus, some rriodifications are necessary in order for this method 
to work. We have rnotlified the factorization phase of M A 2 7 1 0  be able to detect the row and 
coluIiin indices of the first pivot that is less or equal than some given tolerance tol. Note that 
if the rank of the Hessian matrix is less than n - 1, then we skip this whole updating scheme 
ancl perturb the matrix as described in the preceding paragraph. We also modified the solve 
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phase of MA27 such that whenever there is a zero pivot, the corresponding solution component 
is set to zero. This way the solution of Hx = b is the same as the solution of Beg = b (where 
H ,  is the matrix II rninus the row and column a t  which singularity occurred. Since y has  n - 1 
components, the remaining one, which is also the component corresponding to  the zero pivot, is 
set to 0). Afterwards, we obtain the solution of an augmented system using a Schur complement 
method, where the coefficient matrix is the matrix H augmented by two rows and columns; 
that is, the (78 + 1)-st row and column are the ones a t  which singularity was detected, and the 
( 7 ~  + 2)-nd row and column are c.sT and cs, respectively. The Schur complement method is 
iniplemented by first invoking MA39AD [l] to form the Schur cotiiplenient S = D - C."-*B of 
H in the extended matrix,'where D is the 2 by 2 lower right submatrix, C is the lower left 2 by 
7t  submatrix, 'akd B is the upper right 7~ by 2 submatrix, of the augmented matrix. The Schur 
coiiiplement is then factored into its QR factors. Next, MA39BD [l] solves the extended system 
(3.18) using the following well-known scheme: 

1. Solve Hu = b ,  for u. 

2. Solve S y  = b - Cu, for y. 

3. Solve Hv = By, for v. 

4. x = 21- 0. 

7. Test Results 

We tested our tensor and Newton algorithms on a variety of nonsingular-and singular test 
problems. In the following we present and discuss summary statistics of the test results. 

All our computations were performed on a Sun Sparc 10 Model 40 machine using double- 
precision arithmetic. 

First, we tested our program on the set of unconstrained optimization problems froci the 
CUTE 231 and the MINPACK-2 [2] collections. Most of these problems have nonsingular Hessians 
at the solution. We also created singular test probleiris as propose'd in [4, 191 by modifying the 
nonsingular test prohieins from the CUTE collection as follows. Let 

be the function to minimize, where ft : Sji" - VI and 711 is the nurnber of element functions, 
a n  tl 

FT(J) = ( f 1 ( z > 7 - - + ,  f 7 1 1 ( x ) ) .  (7 .1 )  

In nnany cases, F(x] = 0 a t  the minimizer x,, and F'(z,)  is nonsingular. Then according to 
14, 191, we can create singular systems of nonlinear equations from (7.1) by forming 

(7.2) 

where A E PLXk has full column rank with 1 5 k 5 71. Hence, E(z,) = 0 and P ( z , ) h a s  rank 
7t - k .  For unconstrained optiniization, we simply need to define the singular function 
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(7.3) 

From (7.3) and k(z*) = 0, we obtain Vf(s*) = 0. From 

P(z,) = F’(Z,)[I - A(A*A)  -1 A T 1 

and 

we know that’+‘j(s,) has rank n - k. 

n - 1 and n - 2, respectively, by using 
By using (7.2) and (7.3), we created two sets of singular problems, with V‘f(z*) having rank 

A E AT = (1,0 ,..., 0), 
and 

A E W X ’ t ,  
1 0 0  o m . .  
0 1 0  0 - . -  A T =  [ 

respectively. The reason for choosing unit vectors as columns for the inatrix A is mainly to  
preserve the sparsity of the Hessian during the transformation (7.2). 

For all our test problems we used a standard line search backtracking strategy. All the test 
problenis with the exception of rank i~ - 1 and rank 11 - 2 problems were run with analytic 
gradients and Hessians provided by the CUTE and MINPACK-2 collections. For rank n - 1 and 
n - 2 test problems, we have modified the analytic gradients provided by the CUTE collection 
to take into account the modification (7.2). On the other hand, we used the graph coloring 
algorithm [8] to evaluate the finite difference approximation of the Hessian matrix. 

A suiriiriary for the test problems whose Hessians a t  the solution have ranks n, 78 - 1, and 
78 - 2 is presented in Table 1. The descriptions of the test problems and the detailed results are 
given in the Appendix. In Table 1 columns “better” and “worse” represent the number of times 
the tensor method was better and worse, respectively, than Newton’s method by more than one 
gradient evaluation. The “tie” column represents the number of times the tensor and standard 
riiethotls required within one gradient evaluation of each other. For each set of problems, we 
suiiiiiiarize the comparative costs of the tensor and standard methods using average ratios of 
three measures: gradient evaluations, function evaluations, and execution times. The average 
gradient evaluation ratio (geval) is the total number of gradients evaluations required by the 
tensor method, divided by the total number of gradients evaluations required by the standard 
uiethotl on these problems. The same measure is used for the average function evaluation 
(feval) and execution time (time) ratios. These average ratios include only problems that were 
successfully solved by both methods. We have excluded all cases where the tensor and standard 
methods converged to a different minimizer. However, the statistics for the “better,’: “worse,” 
and ”tie” coliiIiins include the cases where only one of the two niethods converges, and exclude 
the cases whew both methods do not converge. We also excluded problems requiring a number 
of gradient evaluations less or equal than :3 by both methods. Finally. coluiiins ‘‘t/s” and “S/t” 
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show the number of problems solved by the tensor method but not by the standard method 
and  the number of problems solved by the standard method but not by the tensor method, 
reqxxtively. 

The improvement by the tensor method over the standard method on problems with rank 
71- 1 is dramatic, averaging 48% in function evaluations, 52% in gradient evaluations, and 59% in 
execution times. This is due in part to the rate of convergence of the tensor method being faster 
than that of Newton’s method, which is known to be only linearly convergent with c.onstant 
2 On problems with rank 71 - 2, the improvement by the tensor method over the standard 
iiiethod is also substantial, averaging 30% in function evaluations, 37% in gradient evaluations, 
and 34% in execution times. In the test results obtained for the nonsingular-problems, the tensor 
Iiiethod is 9%’&orse than the standard method in function evaluations, but 31% and 33% better 
in gradient evaluations and in execution times, respectively. The main reason for the tensor 
method requiring on the average more function evaluations than the standard method is because 
on some problems, the full tensor step does not provide sufficient decrease in the objective 
function, and therefore the tensor method has to perform a line search in both the Newton 
and tensor directions, which causes the number of function evaluations required by the tensor 
method to be inflated. As a result, we intend to investigate other possible global frameworks for 
line search methods that c.oiild potentially reduce the number of functions evaluations for the 
tensor method. 

To obtain an experimental indication of the local convergence behavior of the tensor and 
Newton methods on problems where rank(V2f(x,)) = n-  1, we examined the sequence of ratios 

3 ’  

produced by the Newton and tensor methods on such problems. These ratios for a typical 
prol>lem are given in Table 2. In almost all cases the standard iiiethod exhibits local linear 
convergence with constant near $, which is consistent with the theoretical analysis. The local 
convergence rate of the tensor method is faster, with a typical final ratio of around 0.01. Whether 
this is a superlinear convergence remains to be determined. We have done similar experiments for 
probleiris with rank(V2f(z*)) = n - 2, and the tensor method did not show a faster-than-linear 
convergence rate, because it did not have enough information since p = 1. 

The tensor niethod solved a total of four nonsingular problems, five rank 7h - 1 problems, and 
7 rank 71 - 2 problenis that Newton’s method failed to solve. The reverse never occurred. These 
results clearly indicate t h a t  the tensor method is most likely to be more robust than Newton’s 
method. 

The overall results show that having soiiie extra information about the function and gradient 
i n  t h e  past step direction is quite useful in achieving the advantages of tensor methods. 

8. Summary and Future Research 

In this paper w e  presented new algorithms for solving large, sparse unconstrained optimization 
using tensor methods. Iiiipleriientations using these tensor rriethotls have been shown to be 
considerably iiiore efficient especially on problems where the Hessian iiiatrix has a small rank 
deficiency at  the solution. Typical gains over standard Newton uiethods range from 40% to 
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Table 1: Suminary of the CUTE and MINPACK-2 test problems using line search 
Rank Tensor/Standard Pbs Solved Average Ratio-Tensor/Standard 

V2f(z*) better tie worse t /s  s/t fevd geval time 
n 53 38 5 4 0 1.09 0.69 0.67 

n- 1 18 2 0 5 0 0.52 0.48 0.41 
?L - 2 18 1 1 7 0 0.70 0.63 0.66 

Table 2: Speed of convergence on the BRYBND problem with rank(V'f(z,)) = n-1, as modified 
by (7.2), n = 5000, started from 20. The ratios in second and third columns are defined by 
(7.4). 

Iteration (k) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3 0 

Standard Method 

0.659 
0.655 
0.650 
0.641 
0.629 
0.612 
0.590 
0.571 
0.600 
0.760 
0.940 
0.988 
0.970 
0.969 
0.956 
0.926 
0.891 
0.909 
0.848 
0.926 
0.989 
0.896 
0.832 
0.871 
0.742 
0.667 
0.667 
0.666 
0.665 
0.666 

20 

Tensor Method 

0.659 
0.033 
0.459 
0.96 1 
0.850 
0.667 
0.410 
0.323 
0.126 
0.012 



50% in function and gradient evaluations and in cotnputer time. The size and consistency of 
the efficiency gains indicate that the tensor method may be preferable to Newton's method 
for solving large, sparse unconstrained optimization problems where analytic gradients and/or 
Hessians are available. To firmly establish such a conclusion, additional testing is required, 
including test problems of very large size. 

On sparse problems where the function or the gradient is expensive to evaluate, the finite 
difference approximation of the Hessian matrix by the graph coloring algorithm [8] may be very 
costly. Hence, quasi-Newton methods may be preferable to use in this case. These methods 
involve low-rank corrections to a current approximate Hessian matrix. We are currently at- 
tempting to e>jtend our tensor methods to quasi-Newton methods for large, sparse unconstrained 
minimization Goblems. 

We also considered solving large, sparse, structured unconstrained Optimization problems 
using tensor methods. In this variant, we explored the possibility of using exact third- and 
fourth-order derivative information. The calculation of these derivatives is siinplified using the 
concept of partial separability, a structure that has already proven to be useful when building 
quadratic models for large-scale nonlinear problems [15]. The calculation of the minimizer of 
this ezact tensor model is more problematic, however, because we need to solve a sparse system 
of nonlinear equations. An obvious approach to solve these equations is to use a Newton-like 
method. Such a method is characterized by the approximation of the Jacobian used in the 
Newton process. A simple idea is to use a fixed Jacobian at each step. This has the advantage 
that the ,Jacobian will have already been obtained in the current tensor iteration. However, 
potential slow convergence of such a scheme may make the cost of a tensor iteration prohibitive. 
We are currently investigating other possible approaches, such as a modified Newton's method 
in which the approximated ,Jacobian matrix will incorporate more useful information, or an 
iterative method such as a nonlinear CMRES. This work, a cooperation with Nick Gould [5], 
will be reported in the near future. 

We are allnost done with the implementation and testing of the two-dimensional trust region 
global strategy described in $5.  This work will be reported in a forthcoming paper. 
- We are also impletnenting the algorithms discussed in this paper in a software package. This 
package uses one past point in the formation of the tensor terms, which makes the additional 
cost and storage of the tensor method over the standard method very small. The package will 
he available soon. 
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Appendix: Test Problems and Detailed Experimental Results 

The columns in Tables A-3-A-6 have the following meanings: 

- f 1178~: naiue of the problem. 

- 71: dimension of the problem. 

- zo: starting point. 1, 10, 100 stand for 20, 10x0, and lOOz,-,, respectively. 

- iiiitf: initial value of the objective function. 

- fen: number of function evaluations. 

- grad: number of gradient evaluations. 

- t ime: execution time in seconds. 

- f i7td f: final value of the objective function. 

-\ 

IL, NC stand for iteration litnit exceeded and convergence to a nonminimizer, respectively. The 
iteration limit is 300 for the MINPACK-2 collection and 200 for the CUTE collection. All starting 
points were provided by the MINPACK-2 and CUTE collections. 

Remark: For rank 7 t  - 1 and - 2 problems grad does not include the number of gradients 
required by Hessian evaluations. On the other hand, fcn does include the functions evaluations 
required by Hessian evaluations. 

~ 

Naiiie 

DEPT 
DGLL 
DGL2 
DLJ2 
D L.J :3 

DODC 
DPdB 
DSSC 

DMSA 

Table A- 1 : M I N PAC K-2 test problems 
Description 

Elas tic-plastic torsion problem 
Ginzburg-Landau (1-dimensional) superconductivity problem 
Ginzburg-Landau (%dimensional) superconductivity problem 
2-dimensional Leonard- Jones clusters (molecular confortnation) problem 
:3-&mensional Leonard-Jones clusters (molecular conformation) probleni 
MiniInal surface area problem 
Optimal design with composite materials problem 
Pressure distribution in a journaI bearing problem 
S t pad y st ate coin bus tion problem 
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Table A-2: CUTE test Droblems 

i 

i\J ame 

ARW H EAD 

B D Q RTIC 
BRYBND 

:\ 
DIXM AAN A 
DrXM AANB 
D IX M AA N C 
DIXM AANI 
D IX M A A N J 
DIXON3DQ 
EDENSCH 
EN G VA L 1 
FLETCBV2 
FREUROTH 
L IA RW H D 
MOREBV 

NONDIA 
N ON DQ U .I\ R 

PENALTY 1 

PENALTY2 

POW EL LSG 
QUA RTC: 
S IN Q I: X D 
S ROS EN B R 
TQUARTIC 
T RID I A  
WOODS 
WOODS1 

Description 

Quartic problem whose Hessian is an arrow-head (downwards) 
with diagonal central part and border-width 1 
Quartic problem whose Hessian is banded with bandwidth 9 
Broyden banded system of nonlinear equations, considered in 
the least square sense 
Dixon-Maany test problem (version A) 
Dixon-Maany test problem (version B) 
Dixon-Maany test problem (version C) 
Dixon-Maany test problem (version I) 
Dixon-Maany test problem (version J )  
Dixon’s tridiagonal quadratic 
Extended Dennis and Schnabel problem, as defined by Li 
A  SUI^ of 271 - 2 groups;n - 1 of which contain 2 nonlinear elements 
Boundary Value problem 
Freudenstein and Roth test problem 
A simplified version of the NONDIA problem 
Boundary Value problem. This is the nonlinear least-squares 
version without fixed variables 
Shanno’s nondiagonal extension of Rosenbrock function 
-4 nondiagonal quartic test problem with an 
arrow-head type Hessian having a tridiagonal central part and 
a border-width 1. The Hessian is singular at the solution 
A sum of TI + 1 least-squares groups, the first 71 
which have only one linear element 
A nonlinear least-squares problem with m = 2 7 ~  grougs, 
group 1 is linear, groups 2 to  71 use 2 nonlinear elements, 
groups IL + 1 to 711 - 1 use 1 nonlinear element, and group m 
uses 78 nonlinear elenients 
Extended Powell singular problew 
-4 simple quartic function 
A function with nontrivial groups and repetitious elements 
Separable extension of Rosenbrock’s function 
A quartic function with nontrivial groups and repetitious elements 
Shanno’s TRIDIA quadratic tridiagonal problem 
Extended Woods problem 
Scaled extended Woods problem 
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n j s c  
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n M i A  

- 
n 

LOO 
400 
900 
1600 
2500 
3600 
4900 
6400 
8100 
10000 

100 
400 
900 
1600 
2500 
3600 
4900 
6400 
8100 
IO000 

100 
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900 
1600 
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5600 
4300 
I00 
200 
300 
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100 
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900 
1600 
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6400 
8100 
10000 
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Table A 
ani t f  

-0.36364D+O 1 
-0.36584D+Ol 
-0.36629D+O 1 
-0.36645D+01 
-0.36653D+01 
-0.36657D+01 
-0.36659D+OI 
-0.36661D+OI 
-0.36662D+Ol 
-0.36663D+Ol 
-0.16619D-03 
-0.16619D-03 
-0.16619D-03 
-0.16619D-03 
-0.16619D-03 
-0.16619D-03 
-0.16619D-03 
-0.16619D-03 
-0.166190-03 
-0.l6619D-03 
0.18190D+02 
0.20 13 ID+OZ 
0.22015D+02 
0.23884D+02 
0.2574RD+02 
0.27609D+02 
0.29469D+02 
-O.I0698D+O3 
-0.22945D+03 
-0.35261D+03 
-0. I l782D+03 
-0.23253D+03 
-0.42908D+03 
0.14608D+Ol 
0.14891D+01 
0.15035D+Ol 
0.15123D+01 
0.15183D+Ot 
0.1S227D+OI 
0.1 S26OD+01 
0.15286D+OI 
0.15307D+OI 
0.15324D+Ol 
0.44626D-01 
0.47194D-01 
0.4 777 1 D-0 I 
0.47374D-01 
0.4808ZD~Ol 
0.48 139D-01 
0.48178D-01 
0.482020-01 
0.4822lD-01 
0.48234 D-0 1 
0.11274D+02 
0.1333ID+02 
0 14544D+02.  
0. I ',545D+02 
0 16462D+02 
0.17.336D+02 
0 18186D+02 
0 13022D+O? 
0.19848D+02 
0.20666D+02 
-O.S2548D+Ol 
-0.50507D+01 
-0.43183D+OI 
-0.48224D+OI 
-0.474660+01 
-0 46842D+Ol 
-0.46RLZD+OI 
-0.4 5852 D +O 1 
-0.45445D+O 1 
-0.4508OD+01 

fcn 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
I 8  
18 
18 
18 
18 
I9 
19 
17  - - 

23 I 
159 
265 
306 
354 
503 
686 
252 
405 
544 
375 
485 
1031 

4 
4 
5 

- 5  
6 
6 
6 
7 
17 
21 
14 
13 
23 
5 5  
70 
129 
565 
597 - - 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
7 
3 
3 
3 
3 
2 

groa 
2 
2 
2 
2 
7. 
2 
2 
2 
2 
2 
18 
18 
18 
18 
I 8  
19 
I9  
17 

NC 
N C  
84 
6 7  
96 
1 1 1  
I22 
165 
223 
107 
132 
145 
I12 
I39 
28 I 

4 
4 
5 
5 
6 
6 
6 
7 
12 
I4 
8 
IO 
I3  
23 
33 
49 
L63 
168 
IL 

2 
2 
2 
2 
2 
2 
2 

rL 

7 , 
2 
3 
3 
7 
3 
3 
3 
7 
3. 
3 
2 

-O.L0694D+02 
-0.10902D+02 
-0.10946D+02 
-0.10961D+02 
-0.10969D + 02 
-0.10973D+02 
-0.10976D+02 
-0.10977D+02 
-0.10978D+02 
-0.10979D+02 
-0.84562D+04 
-0.84562D+04 
-0.84562D+04 
-0.84562D+04 
-0.84562D+04 
-0.84562D+04 
-0.84562D+04 
-0.844 13D+O4 

- 
0.16228D+02 
0.16231D+02 
0.16232D+02 
0.16232D+02 
0.16232D+02 
0.16232D+02 
0.16232D+02 
-0.13375D+03 
-0.28056!2+03 
-0.44216D+03 
-0.17954D+03 
-0.340730+03 
-0.63744D+03 
0.14185D+01 
O.I4206D+01 
0.142IOD+OL 
0.14212D+01 
0.142IZD+OI 
0.14213D+01 
O.I42I3D+OI 
0.14213D+01 
O.I4213D+01 
0.14213D+01 
-0. L0980D-01 
-0. I IZ48D-01 
-0. I l329D-01 
10. I1351 D-01 
-0.11359D-01 
-0.11368D-01 
-0.11372D-01 
-0. I IR74D-01 - 

-0.27881 D+OO 
-0.28 144D +00 
-0 .282 13D +00 
-0 28249D+OO 
.0.28264D+OO 
-0.2827ZD+OO 
-0.28277D+00 
-0.2828OD+OO 
-0.28282D+00 
-0 28284D+OO 
-0.5537!3D+OI 
-0.56077D+01 
-0.56098D+OI 
-0.56105D+01 
-0.56108D+01 
-0.561 IOD+OI 
-0.561 12D+Ol 
-0 ..56 1 12D +O I 
- 0.56 I I .3 D +O 1 
-0.561 l3D+OI 

time 

0.410D-01 
0.180 D +00 
0.449D+00 
0.900D+00 
0.153D+01 
0.239D+01 
0.348D+01 
0.478D+01 
0.746D+O 1 
0.833D+O 1 
0.41OD+OO 
0.173D+01 
0.397D+01 
0.706D +O 1 
0.1 10D+OZ 
0.169D+02 
0.230D+02 
0.270D+02 - - 
0.113D+02 
0.450D+02 
0.202D+03 
0.564D+03 
0.133D+04 
0.314D+O4 
0.128D+05 
0.113D+03 
0.103D+O4 
0.372D+04 
0.137D+03 
0.838D+03 
0.826D+04 
O.l50D+00 
0.64OD+OO 
0.212D+01 
0.396D+OI 
0.833D+OI 
0.130D+02 
0.190D+02 
0.308D+02 
0.846D+02 
0.117D+03 
0.420D+00 
0.234D+01 
0.744D+01 
0.256D+02 
0.6 17D+02 
0.148D+03 
0.7 1 BD +03 
0.999D+03 - - 
0.488D-01 
0.209D+00 
0.500D+00 
0.353 D +00 
O.I50D+01 
0.243D+OI 
0.374D+01 
0.436D+OI 
0.733D+01 
0.878D+Ol 
0. I lOD+OO 
0 . 5  10D+00 
0.120D+OI 
0.223D+01 
0.382Df01 
0.595 D+01  
0.880D+01 
0.115D+02 
O.l73D+02 
0.102D+02 

fcn 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
5 
9 
6 
7 
8 
9 
7 
7 
7 
9 

150 
210 
418 
455 
607 
75 1 
849 
I76 
47s 
63  1 
348 
608 
963 

4 
10 
4 
10 
I 4  
10 
11 
9 
16 
17 
16 
19 
41 
5 6 r  
117 
194 
406 
526 - 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
2 

gro;r 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
5 
6 
6 
7 
8 
9 
7 
7 
7 
3 
38 
43  
76 
81 
102 
137 
144 
51 
89 
1 I8 
65 
113 
173 
4 
4 
4 
5 
5 
6 
6 
7 

7 
8 
10 
14 
21 
28 
4 2  
76 
34 
IL 
IL 
2 
2 
2 
2 
2 
2 

2 

2 
3 
7 
3 
3 
3 
3 
3 
3 
3 
2 

n 

3 

-0.10694D+02 
-0.10902D+O2 
-O.L0946D+02 
-0.10961D+02 
-0.10969D+02 
-0.10973D+02 
-0.10976D+02 
-0.10977D+02 
-0.10978D+02 
-0.10979D+02 
-0.84562D+04 
-0.84562D+O4 
-0.84562D+O4 
-0.84562D+04 
-0.84562D+O4 
-0.84562D+04 
-0.84562D+O4 
-0.84562D+04 
-0.84562D+04 
-0.84562D+04 
O.I6228D+02 
0. I623 1 D+02 
0.16232D+02 
0.16232D+02 
0.16232D +02 
0.16232D+02 
0.162321) +02 
-0.13396D+03 
-0.28140D+03 
-0.440251)+03 
-0.17073D+03 
-0.34522D+03 
-0.6331 I D S 0 3  
0.14185D+01 
0.14206D +O 1 
0.14210D+Ol 
O.l42l2D+Ol 
0.14212D+Ol 
0.14213D+Ol 
0.14213D+01 
0.14213D+01 
0.14213D+01 
0.14213D+01 
-0.10380D-01 
-0.11248D-01 
-0.11329D-01 
-0.1 1351D-01 
-0.1 1359D-01 
-0.11368D-01 
-0.11372D-01 
-0.11374D-01 - 

- 
-0.2788 1 D+OO 
.0.28144D+00 
-0.29219D+00 
-0.28243D+OO 
-0.28264D+00 
-0.28272D+00 
-0.282iiD+00 
-0.28280D+00 
-0.28282D+OO 
-0.28284D+00 
-0.55973D+01 
-0.56077D+01 
-0.56038D+01 
.O ..5 6 1 05 D + 0 1 
-0..56108D+OI 
-0.561 10D+01 
-0.561 IZD+Ol 
-0.561 l Z D i O 1  
-0.561 13D+OI 
-0 .561l3D+01 

time 

0.391D-01 
0.182D+00 
0.471D+00 
0.900D+00 
O.l5lD+Ol 
0.236D+01 
0.349D+01 
0.4830+01 
0.713D+01 
0.83 1D+O 1 
O.IIOD+OO 
0.62OD+OO 
0.129D+01 
0.282D+01 
0.512D+01 
0.847D+Ol 
0.860D+01 
0.115D+02 
0.149D+02 
0.236D+02 
0.531D+O1 
0.307D+02 
0.169D+03 
0.444D+03 
0.1 17D+O4 
0.219D+04 
0.644D+04 
0.544D+02 
0.698D+03 
0.305D+04 
0.805D+02 
0.687D+03 
0.466D+O4 
0.710D+00 0.160D+00 

0.172D+01 
O.446D+O1 
0.761D+01 
0.146D+02 
0.210D+02 
0.342D+02 
0.595D+02 
0.601D+02 
0.487D+00 
0.272D+01 
0.943D+01 
0.267D+02 
0.623D +02 
0.144D+03 
0.380D+03 
0.64OD+03 - 

- 
0.508D-01 

0.201D+00 
0.4 30D +00 
0.359D+00 
0.160D+01 
0.256D+01 
0.362D+01 
0.489D+01 
0.741D+OI 
0.862D+01 
0.120D+00 
0.540D+00 
O.I31D+OI 
0.246D+01 
0.413D+01 
0.624D+OI 
0.313D+01 
0. IZZD+OZ 
O.I73D+02 
O.IOZD+OZ 
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QUART(: 
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SO00 

- 

!OOO 

'\ 
.SO00 

5000 

3000 

3000 

3000 

3000 

3000 

zoo0 

500U 

10000 

SO00 

10000 

5000 

10000 

loo00 

LOO 

I00 

10000 

1000 

- 
3 
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IO 
100 
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IO 

100 
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LOO 

1 
10 
100 

I 
10 

100 
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10 
100 
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10 

100 
I 

10 
100 
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LOO 

I 
10 

100 
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IO 
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1 
10 
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1 
10 

100 
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10 
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I 
10 
LOO 
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Table A-4 
init f 

0.14997D+05 
O.I9978D+09 
0.13396D+ 13 
0.22510D+06 
0.22424D+IO 
0.224lOD+l4 
0.12490D+06 
0.10765D+12 
0.12303D+18 
0.80000D+01 

'0.24200D+03 
0.20402D +OS 
0.2050 1 D+OS 
0.80013D+10 
0.8OOOOD + 16 
0.43242D+05 
0.17227D+11 
0.16116D+l7 
0.74483D+0.5 
0.34452D+ I1  
0.32233D+17 
0.12022D+05 
0.80004D+ I O  
0.80000D+ 16 
0.00000D+00 
0.00000D+00 
0.00000D +OO 
0.73583D+07 
O.l5184D+12 
0.16253D+16 
0.29494D+06 
0.31990D+ 10 
0.31994D+ I 4  
-0.50013D+00 
0.39995D +02 
0.48995D+04 
0.50486D+O7 
O.l5963D+09 
O.L3056D+15 
0..58500D+07 
0.37359D+11 
0.10189D+16 
0..1.5969D-06 
0.15983D-04 
0.1719OD-02 
0.39996D+07 
0.12099D+Il 
0.10200D+15 
O.l0006D+05 
0.99981D+O8 
0.99380D+ 12 
0 11448D+l2 
0.1 1448D+16 
0.11448D+20 
0.1688.5D+07 
0.159331)+ I I 
0.159391)+ 15 
0 53750D+06 
0.403851)+10 
0.40251D+14 
0.138501)+ 1 5  
0.18lZSD+l5 
0 658041)+14 

fcn 
7 

12 
18 
10 
16 
22 
24 
37 

2 
2 
2 
6 
18 
29 
6 

- 

- - 
15 - - 
too 
184 
263 

I 
1 
1 

13 
19 
24 
8 
14 
20 
I 
2 
2 

461 
444 
92 
13 
22 
26 
2 
2 
2 
6 

34 
39 
20 
25 
31 
47 
51  
55 
24 
27 
.3 I 
I6  
21 
27 
3 5  
3.5 
34 

- 

7 
12 
I 8  
10 
16 
22 
I7 
26 
IL 
2 
2 
2 
6 
12 
21 
6 
IL 
IL 
15 
IL 
IL 
33 
58 
77 
1 
1 
1 
13 
19 
24 
8 
14 
20 
I 
2 
2 

83 
77 
45 
13 
21 
26 
2 
2 
2 
6 

34 
33 
20 
25 
31 
38 
43 
48 
2.1 
26 
.1 I 
16 
21 
27 
35 
35 
34 
- 

Results of the CUTE test prob 
Standard 
f inolf 

0.00000D+00 
0.00000D+00 
0.00000D+00 
0.39838D+04 
0.39838Dt04 
0.39838D+04 
0.13587D-19 
0.14231D-19 

0.11414D-24 
0.34514D-23 
0.29050D-21 

0 .  IOOOOD +O 1 
0.10000D+O1 
0.10000D+01 
O.lOOOOD+Ol 

- 

- 
- 

0.1OOOOD+01 - - 
0.10000D+01 
0.10000D+01 
0.1OOOOD+Ol 
O.OOOOOD+OO 
O.OOOOOD+OO 
O.OOOOOD+OO 
O.L2003D+05 
O.l2003D+OS 
0.12003D+05 
0.55487D+04 
0.55487D+04 
0.55487Df04 
O.OOOOOD+00 
-0.50013D+00 
-0.500 I3D +00 
0.60793 D +06 
0.60726D+06 
0.42206D+06 
0.81983D-21 
0.63218D- 1 7 
0.16259D-16 
0.$8271 D- 14 
0.22833D-09 
0.32151D-04 
0.47632D-24 
0.53482D-25 
0.22382D-20 
0,413981)-09 
0.12450D-08 

-0.73354 D-03 
0.30255D-03 
0.30255D-OD 
0.30257D-03 

0.97036D+O.S 
0 .3 i0360+05 
0.3i096D+05 
0.10947D-04 
0.023201)-04 
0.195561)-04 
0.22354D-09 
0.20411D-09 
0.37.5 LSD-09 

fen 
3 
18 
33 
24 
38 
51 
49 
50 

810 
2 
2 
2 
8 
I9  
19 
15 - 
I 5  - - 
108 
152 
247 

1 
1 
1 

31  
53 
48 
7 

27  
49 
I 
2 
2 

424 
200 
155 
13 
24 
48 
2 
2 
2 
10 
20 
52 
20 
25 
31 
IO 
7 
30 
26 
47 
i o  
33 
28 
31 
35 
35 
35 

- 

gro 
3 
14 
20 
12 
17 
23 
16 
24 
189 
2 
2 
2 
6 
12 
I9  
6 
IL 
IL 
13 
IL 
IL 
18 
32 
41 
I 
I 
1 
16 
20 
25 
7 
14 
20 
1 
2 
2 

53 
30 
51 
9 
12 
IS 
2 
2 
2 
5 
16 
2 1  
20 
25 
31 
7 
7 
16 
20 
27 
31 
1 .5 
22 
27 
35 
3 5 
34 

US 
Tensor 
f inol f 

0.00000D+00 
O.OOOOOD+OO 
0.00000D+00 
0.39838D+04 
0.39838D+04 
0.39838Di-04 
0. L2928D- 16 
0.98532D-17 
0.35466D-16 
0.11414D-24 
0.34514D-23 
0.23050D-21 
O.IOOOOD+01 
0.10000D+01 
O.lOOOOD+Ol 
0.1 OOOOD +O I - 

- 
0.10000D+01 - 

- 
O.lOOOOD+Ol 
0.10000D+01 
O.lOOOOD+Ol 
O.OOOOOD+OO 
0.00000D+00 
0.00000D+00 
0.120030+05 
0.12003D+05 
0.12003D+05 
0.55487D+04 
0.55487D+04 
0.55487D+O4 
0.00000D+OO 
-0.50013D+00 
-0..50013D+00 
0.60821D+06 
0.3.5200D+07 
0.53488D+06 
0.48397D-27 
0.11 125D- I6 
O.31712D-21 
0.58271D-14 
0.22833D-09 
0.32 I5 1 D-04 
0.1 IZOOD-20 
0.19919D-28 
0.65733D- 17 
0.414 130-09 
0.125.38D-08 
0.87210D-09 
0.30249D-03 
O.L)0248 D-03 
0.302521)-03 
0.3i036D+05 
0.37036D+0.5 
0.37096D+05 
0 83306D-0.5 
0.1163.50-04 
0..540.51D-05 
0.22354D-09 
0.204 1 I D-09 
0.37515D-09 

t ime 

0.168D+02 
0.110D+O3 
0.160D+O3 
0.127D+02 
0.185D+02 
0.254D+02 
0.38 lD+O2 
0.551D+02 
0.473D+03 
0.560D+OO 
0.570D+00 
0.560D+00 
0.205D+01 
0.455D+01 
0.724D+Ol 
0.218D+Ol - - 
0.506D+01 - - 
0.907D+01 
0.157D+02 
0.209D+02 
0.700D-01 
0.700D-01 
0.700D-0 1 
0.666D+O1 
0.877D+01 
O.l06D+OZ 
0.548D+Ol 
0.124D+02 
0.186D+02 
0.380D+00 
0.215D+01 
O.ZlZD+Ol 
0.785D+02 
0.414D+OZ 
0.605D+02 
0.148D+03 
0.205D+03 
0.319D+03 
0.940D+00 
0.960D+00 
0.910D+00 
0.737D+02 
0.274D+03 
0.367D+03 
0.3iOD+03 
0.123D+O4 
O.I53D+OI 
O.i80D+00 
0 850Df00 
0.2 I 3D+O 1 
0..300D+01 
0.41 ID+OI 
0.481D+01 
O.l73D+02 
0.257D+02 
0.316D+02 
0.287D+01 
0.28.5D+0 I 
0.278DfO 1 

27 



I 
c 

func 

SINQU A D  

SRoSENBR 

TQUARTIC 

TRIDIA 

WOODY 

WOODS1 

- 
n 

10000 

- 

5000 

1600 
* \  

10000 

10000 

10000 

- 

Table -4-4: Results of the CUTE test problems (continued) 
1 1 Standard I Tensor 

fanalf 1 tame I f cn I grad f anal f 
t 

EO anatf fcn grad 

1 0.65610D+00 25 20 
10 O.OOOOOD+OO I 1 
100 0.65610D+04 18 18 

I 0.48500D+05 9 8 
10 0.44893D+IO 97 66 
100 0.51123D+14 - IL 

1 0.81000D+00 2 2 
10 0.000dOD+00 I L 
100 0.8lOOOD+O2 2 2 

1 0.50005D+08 2 2 
10 0.5000SD+10 2 2 
100 0.50005D+12 2 2 

I 0.27296D+08 28 23  
10 0.22566D+l2 51 42 

100 0.22122D+16 73 60 

IO 0.41460D+10 I 5  15 
100 0.40591D+l4 21 21 

1 0.55500D+06 9 9 

0.39609D- 10 0.975D+03 
0.35876D-15 0.290D+00 
0.69625D-08 0.88lD+03 
0.93253D- I I 0.297D+01 
O.38588D-18 0.279D+02 

O.39936D-27 0.270D+00 
0.39936D-27 0.200D-01 
0.1262ZD-24 0.260D+00 
0.41242D-24 O.l19D+O1 
0.13131D-22 0.117D+01 
0.33835D-20 0.117D+01 
0.31973D-14 0.259D+02 
0.42521D-12 0.484D+02 
0.27578D-10 0.698D+02 
0.17486D-11 0.949D+OI 
0.38193D-13 0.165D+02 
0.61 17ID- 14 0.236D+02 

- - 

Table -4-5: Results of the rank n - 1 test problems from 
Standard 

fanal f f unc 

B R Y B N D  

D IX M A  A N J 

D I X I . J N ~ D Q  

N (.I N DQU A R 

QUARTC 

SKI ) S E N B R  

TQ U A K T  I C  

Tninir\ 

wi~t)D; 

W( JlJDS 1 

-I 
n ro 

.so00 1 
10 

100 

10 
100 

10 
LOO 

10 
IO0 

IO 
100 

IO 
100 

IO 
100 

IO 
100 

10 
100 

10 
LOO 

3000 I 

5000 I 

10000 1 

I000 I 

i o00  I 

1000 1 

10000 1 

1000 1 

IO00 I 

inac f 

O.l2488D+O6 
O.l0765D+12 
0.12303D+18 
0.00000D+00 
0.00000D +00 
0.00000D+00 
0.4OOOOD +O I 
O.I2100D+03 
0.10201D+05 
0.10003D+05 
0.9998 1 D+O8 
0.99980D+12 
0.45000D+05 
0.45000D+09 
O.tSOOOD+ I 3  
0.48481D+0.5 
0.44888D+10 
0 . % I  1ZZD+ 14 
0.72068 D +04 
0.153620-23 
0 32368D+06 
0.50005D +08 
0.50005D+ IO 
0.50005D+I2 
0 27296D+07 
0.22566D+ I I 
0.22122D+1.5 
0.5.543lD+O.S 
0.4 1460D+08 
0.40591 D+ 13 

ten 
488 

3396 
I 
L 
I 
6 
6 
6 

- 

57 
81  
I01 
30 

286 

38 
1 

23 
6 
6 
1 1  

248 
342 
446 
86 
1 I6 
146 
- 

z 
30 
IL 

20 1 
I 
1 
I 
2 
2 
2 
IL 
IL 
IL 
15 
21 
26 
8 

65 
IL 
12 
1 
8 
2 
2 
7 

49 
67 
87 
18 
24 
30 

- 

0.17586D- 10 

0.9775OD-21 
0.00000D+00 
0.00000D+00 
O.OOOOOD+OO 
0.62536D- 17 
0.18917D-15 
0.15948D- 13 

- 

- 
- 

0.617OSD-05 
0.36635D-0.5 
0. I1038D-04 

0.23622D-12 

0 384360-15 
0.38215D- 17 
0.20E95D- 15 
0:41 155D- 14 
0.44399D-12 
0.14577D- 13 
0.52712D)-11 
0.63594D-11 
0.44137D-11 
0.252011)-09 
0.21634D-09 
0.13531D-09 

0. I r 4 0 3 ~ . 0 +  

- 

t ime 

0.376D+03 

0.263D+04 
0.800D-01 
0.800D-01 
0.7OOD-01 
0.712D+01 
0.713D+01 
0.713D+01 

- 

- 
- - 

0.631D+01 
0.305D+01 
O.I13D+O2 
0.477D+02 
0.440D+03 

0.4300+01 
0.200D-01 
0.275D+01 
0.267D+02 
0.266D+02 
0.53 1 D +02 
0.236D+02 
0.324D+02 
0.423D+02 
0.8 16D+01 
0 .11  ID+O2 
O.l39D+02 

66 
I 

47 
16 
65 

204 
2 
1 
2 
2 
2 
2 

49 
72 
100 
I2 
22 
33 - 

21 
34 
49 
8 
14 
20 

0.35876D- 15 
0.3587613- 15 
0.42524D-15 
0.10927D- 17 
0.22535D-15 
0.2605 1 D-08 
0.39936D-27 
0.39936D-27 
0.12622D-24 
0.41242D-24 
0.13 13 1 D-22 
0.33835D-20 
0.33996D- 17 
0.42039D-09 
0.16526D- 16 
0.25903D-20 
0.26198D-19 
0.17403D-17 

tame 

0.103D+04 
0.300D +00 
0.966D+03 
0.332D+Ol 
0.179D+02 
0.547D+02 
0.260D+00 
0.200D-01 
0.260D+00 
0.117D+Ol 
O.117D+O1 
0.117D+O1 
0.3050+02 
0.503D+02 
0.730D+O2 
0.103D+02 
0.196D+02 
0.285D+02 

le CUTE collection 
Tensor 
f anal f E 

176 
1088 
1560 

1 -  
I 
I 
§ 

‘ 6  
6 

182 
4414 
3820 

I 3  
29 
130 
44 
121 
242 
17 
1 

6 
6 
11 

224 
245 
308 
50 
84 
125 

za 

10 
60 
84 
1 
1 
1 
2 
2 
2 
24 
187 
194 
4 

22 
7 

21 
49 
4 
1 
9 
2 
2 
3 
32 
38 
47 
10 
16 
22 

0.13179D-10 
0.85644D- 10 
0.16631 D- 1 1 
0.00000D+00 
O.OOOOOD+OO 
0.0000OD+00 
0.62536D- 17 
0.18917D-15 
0.15948D-13 
0.577911)-07 
0. I7004D-07 
0.6284613-07 
0.24654D-07 
0.53107D-07 
0.50306D-06 
0.45822D-12 
0.1658713-IO 
0.352170- I I 
0.98215D-17 
0.98215D-17 
0.14036D-15 
0.41 155D-14 
0.44999D-12 
0.14914D-13 
0.41898D-IO 
0.20730D- I I 
0.22064D- IO 
0.21981D-08 
0.40452D-08 
0.50008D-08 

tame 

0.130D+03 
0.785D+03 
O.lllD+O4 
0.700D-01 
0.7OOD-01 
0.800D-01 
0.718D+01 
0.713Df01 
0.713D+01 
0.635D+03 
0.608D+O4 
0.560D+O4 
0.144D+OI 
0.240D+OI 
0.107D+02 
0.4220+02 
0.146D+03 
0.344D+03 
0.15.5D+01 
0.200D-01 
0.335D+OI 
0.266D+02 
0.2660$02 
0.535D+02 
O.l68D+OZ 
0.199D+02 
0.247D+02 
0.463D+01 
0.765D+01 
0.108D+02 



BRYBND 

DlXM AANJ 

D M U N 3 D Q  

NUNDQUAR 

QUARTC 

SROSENBR 

TQUARTIC 

T K l D l A  

WO(:J DY 

Ile A. - 
n - 

5000 

3000 

5000 

10000 

1000 

5000 

1000 

10000 

1000 

1000 

- 

: R  - 
3 

I 
10 

100 
I 

10 
I00 
I 

10 
IO0 

1 
10 

100 
I 
10 

100 
I 

10 
100 

1 
10 

100 
1 
IO 
IO0 

1 
10 

100 
1 

10 
100 - 

iults of thc 
init f 

0.12487D+06 
0.10765D+12 
0.12303D+18 
0.00000D+00 
O.OOOOOD+OO 
0.00000D+00 
0.80000D+O 1 
0.242OOD+O3 
0.20402D+05 
O.l0002D+05 
0.99980D+08 
0.99980D+12 
0.45000D+05 
0.45000D+09 
0.45000D+13 
0.4848 1 D+05 
0.44890D+10 
0.51122Dfl4 
0.32335D+04 
0.15946D-23 
0.32335Dt06 
0.50005D+08 
O.SOOOSD+ IO 
0.5000SD+ I2 
0.27277D+07 
0.22564D+11 
0.22121D+ IS 
0.55470D+05 
0.41458D+09 
0.40590D+ 13 

fcn 
527 
824 

1 
I 
I 
7 
7 
7 

- 

- - - 
57 
81 
101 
72 

429 

48 
I 

49 
8 

15 
196 
325 
434 

- 

a 

118 - - 
- 

grad 
29 
46 
IL 
1 
1 
1 
2 
2 
2 
IL 
IL 
IL 
15 
21 
26 
13 
77 
IL 
I2 
1 
12 
2 
2 
3 
31 
51 
68 
18 
NC 
N C  - 

rank n - 2 test problems from the CUTE collection 
Standard I Tensor 

fanoif I t%me I f c n  I grad f anal f I time 
I I I 1 

0.42357D-09 0.454D+03 268 
0.16732D-15 0.7240+03 670 - - 1401 

O.OOOOOD+OO 0.800D-01 1 
0.00000D+00 0.800D-01 1 
0.00000D+00 0.800D-01 I 
0.625640-17 0.938D+01 7 
0.18928D-15 0.934Dt01 7 
0.15948D-I3 0.933D+01 7 - - 1109 

- - 1674 - - 1923- 
0.61708D-05 -0.646Dt01 13  

.0.36635D-05 0.921D+01 101 
0.11038D-04 0.115D+02 130 
0.82242D-14 0 .108Dt03 91  
0.69440D-04 0.683D+03 465 - - 1294 
0.34635D-16 0.565D+01 DO 
0.159469-23 0.200D-01 1 
0.18893D-I5 0.564D+01 54 
0.41344D-14 0 .349Dt02 8 
0.45002D-12 0.350Dt02 8 
0.25973D-12 0.703D+02 I5 
0.77284D-I3 0.18913+02 168 
0.68702D-06 0 .316Dt02 289 
0.56038D-05 0.423D+02 89 
0.18927D-09 O.IOID+OZ 91 - - 127 

- - 31 

.' 

14 
32 
68 
1 
1 
1 
2 
2 
2 
70 
86 
101 
4 
I7  
22 
I 5  
68  

20 I 
6 
I 

12 
2 
2 
3 

26 
41 
11 
16 
22 
6 
- 

O.30203D-08 0.219D+03 
0.343OSD-10 0 .519Dt03 

0.OOOOOD +OO 0.700D-0 1 
O.OOOOOD+OO 0.800D-01 
O.OOOOOD+OO 0.800D-01 
0.62564D- 17 0.938D+OI 

0.15948D-13 0.936D+01 
0.14468D-06 0.271DtO4 
0.96220D-07 0.3320+04 
0.40263D-07 0.382D+04 
0.24654D-07 0.145D+01 
0.53107D-07 0.819D+01 
0.50906D:06 0.107D+O2 
0.23908D- 16 0.128DtO3 
0.14337D-16 0.615Dt03 
0.80433D+06 0.183D+O4 
0.654430-18 0 .305Dt01 
0.15946D-23 0.200D-01 
0.56162D-I8 0 .636Dt01 
0.41344D- 14 0.349DtO2 
0.45002D-I2 0.349D+02 
0.25973D- 12 0.709DtOZ 
0.18453D- 12 0.165D+O2 
0.108691)-12 0.268D+02 
0.11251D-08 0.684Dt01 
0.10966D-07 0.975Dt01 
0.30436D-08 0.136Dt02 
0.19654D-08 0.324D+01 

0 . ~ 6 8 9 7 ~ - 1 ~  O.IIOD+OI 

0 . 1 8 9 2 8 ~ -  15 o . 9 3 4 ~ + 0 1  


