473 research outputs found

    Non-adiabatic pressure loss boundary condition for modelling turbocharger turbine pulsating flow

    No full text
    This paper presents a simplified methodology of pulse flow turbine modelling, as an alternative over the meanline integrated methodology outlined in previous work, in order to make its application to engine cycle simulation codes much more straight forward. This is enabled through the development of a bespoke non-adiabatic pressure loss boundary to represent the turbine rotor. In this paper, turbocharger turbine pulse flow performance predictions are presented along with a comparison of computation duration against the previously established integrated meanline method. Plots of prediction deviation indicate that the mass flow rate and actual power predictions from both methods are highly comparable and are reasonably close to experimental data. However, the new boundary condition required significantly lower computational time and rotor geometrical inputs. In addition, the pressure wave propagation in this simplified unsteady turbine model at different pulse frequencies has also been found to be in agreement with data from the literature, thereby supporting the confidence in its ability to simulate the wave action encountered in turbine pulse flow operation

    Tribocorrosion studies in centrifugally cast al-matrix siCp-reinforced functionally graded composites

    Get PDF
    The present work reports results obtained from a series of preliminary experiments aiming at complementing the current knowledge about the wear behaviour of centrifugally-cast FGM Al/SiCp composites, through concurrent corrosion processes. Precursor MMC’s were prepared by rheocasting, using 118.8 ”m SiC particles and an Al-10Si–2.2 Mg alloy. Those MMC’s were then molten and centrifugally cast in order to produce cylindrical FGMMC’s. Discs machined from the top surface of each sample were tested against nodular cast iron pins, using an inverted configuration pin-on-disc tribometer. Sliding tests took place at room temperature, over a 50000 m sliding distance, with a sliding speed of 0.3 m s-1, under a 5 N normal load; both dry-sliding and water-lubricated tests were performed. In order to elucidate the mechanisms involved, the wear coefficients were calculated for each condition, and the samples were subjected to morphological characterization via SEM/EDS. Concurrently, in the case of the water-lubrication tests, the corrosion potential of the tribological pair was monitored. The results obtained show an increase in material loss for the water-lubricated cases, although variations are registered depending on reinforcing particle volume fraction. At the same time, the open circuit potential response of the tribological pair may be correlated with the events of formation/destruction of the tribolayers.Fundo Social Europeu, Program PRODEP Fundação para a CiĂȘncia e Tecnologia - (FCT

    Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus

    Full text link
    Background: Some types of flavonoid intermediates seemed to be restricted to plants. Naringenin is a typical plant metabolite, that has never been reported to be produced in prokariotes. Naringenin is formed by the action of a chalcone synthase using as starter 4-coumaroyl-CoA, which in dicotyledonous plants derives from phenylalanine by the action of a phenylalanine ammonia lyase. Results: A compound produced by Streptomyces clavuligerus has been identified by LC-MS and NMR as naringenin and coelutes in HPLC with a naringenin standard. Genome mining of S. clavuligerus revealed the presence of a gene for a chalcone synthase (ncs), side by side to a gene encoding a P450 cytochrome (ncyP) and separated from a gene encoding a Pal/Tal ammonia lyase (tal). Deletion of any of these genes results in naringenin non producer mutants. Complementation with the deleted gene restores naringenin production in the transformants. Furthermore, naringenin production increases in cultures supplemented with phenylalanine or tyrosine. Conclusion: This is the first time that naringenin is reported to be produced naturally in a prokariote. Interestingly three non-clustered genes are involved in naringenin production, which is unusual for secondary metabolites. A tentative pathway for naringenin biosynthesis has been proposedThis work was supported by Grant BIO2012-34723 from the Spanish Ministry of Economy and Competitivity. R. Álvarez-Álvarez received a FPU fellowship from the Spanish Ministry of Education, Culture and Sport

    Evaluation of SiC-particle connectivity in functionally graded Al/SiCp composites by synchrotron radiation holographic microtomography

    Get PDF
    Reliability of functionally graded metal matrix composites (FGMMCs) for automotive components is still dependent on the detailed knowledge of the mechanisms of the microstructural build-up, for instance on the mechanisms leading to the distribution and relative positions of the reinforcing particles. In order to assess the influence of the SiC particle size on the 3-D inter-particle connectivity in functionally graded Al/SiCp composites produced by centrifugal casting, X-ray microtomography experiments were performed at the ID19 beamline in ESRF (European Synchrotron Radiation Facility). The FGMMCs consisted of an Al-10Si-2Mg alloy matrix, reinforced by an average SiC particle volume fraction of 0.10; two different average sizes were used: 37 ÎŒm and 12 ÎŒm. The holographic modification of the X-ray CMT (Computer Micro- Tomography) method allowed to obtain neatly contrasted images, as opposed to classical CMT.Good agreement was found between the particle size evaluated by CMT and by laser interferometry. Particle clustering has been evaluated in number and volume, showing that a lower mean particle size is related to more clustering. Such an adverse effect relies on the importance of particle/liquid alloy surface tension. Also, the mean particle size has been evaluated as a function of particle number within a cluster: as expected, the larger a cluster, the larger the particles inside it.(undefined
    • 

    corecore