1,539 research outputs found

    O2 oxidation reaction at the Si(100)-SiO2 interface: A first-principles investigation

    Get PDF
    We investigated the oxidation reaction of the O2 molecule at the Si(100)-SiO2 interface by using a constrained ab initio molecular dynamics approach. To represent the Si(100)-SiO2 interface, we adopted several model interfaces whose structural properties are consistent with atomic-scale information obtained from a variety of experimental probes. We addressed the oxidation reaction by sampling different reaction pathways of the O2 molecule at the interface. The reaction proceeds sequentially through the incorporation of the O2 molecule in a Si-Si bond and the dissociation of the resulting network O2-species. The oxidation reaction occurs nearly spontaneously and is exothermic, regardless of the spin state of the O2 molecule. Our study suggests a picture of the silicon oxidation process entirely based on diffusive processe

    On the AGN radio luminosity distribution and the black hole fundamental plane

    Full text link
    We have studied the dependence of the AGN nuclear radio (1.4 GHz) luminosity on both the AGN 2-10 keV X-ray and the host-galaxy K-band luminosity. A complete sample of 1268 X-ray selected AGN (both type 1 and type 2) has been used, which is the largest catalogue of AGN belonging to statistically well defined samples where radio, X and K band information exists. At variance with previous studies, radio upper limits have been statistically taken into account using a Bayesian Maximum Likelihood fitting method. It resulted that a good fit is obtained assuming a plane in the 3D L_R-L_X-L_K space, namely logL_R= xi_X logL_X + xi_K logL_K + xi_0, having a ~1 dex wide (1 sigma) spread in radio luminosity. As already shown, no evidence of bimodality in the radio luminosity distribution was found and therefore any definition of radio loudness in AGN is arbitrary. Using scaling relations between the BH mass and the host galaxy K-band luminosity, we have also derived a new estimate of the BH fundamental plane (in the L_5GHz -L_X-M_BH space). Our analysis shows that previous measures of the BH fundamental plane are biased by ~0.8 dex in favor of the most luminous radio sources. Therefore, many AGN studies, where the BH fundamental plane is used to investigate how AGN regulate their radiative and mechanical luminosity as a function of the accretion rate, or many AGN/galaxy co-evolution models, where radio-feedback is computed using the AGN fundamental plane, should revise their conclusions.Comment: Submitted to MNRAS. Revised version after minor referee comments. 12 pages, 12 figure

    Uncertainty and Sensitivity of the Feature Selective Validation (FSV) Method

    Get PDF
    The FSV method is a recognized validation tool that initially assesses the similarity between data sets for electromagnetic measurements and models. Its use may be extended to many problems and applications, and in particular, with relation to electrical systems, but it should be characterized in terms of its uncertainty, as for measurement tools. To this aim, the Guide to the Expression of Uncertainty in Measurement (GUM) is applied for the propagation of uncertainty from the experimental data to the Feature Selective Validation (FSV) quantities, using Monte Carlo analysis as confirmation, which ultimately remains the most reliable approach to determine the propagation of uncertainty, given the significant FSV non-linearity. Such non-linearity in fact compromises the accuracy of the Taylor approximation supporting the use of first-order derivatives (and derivative terms in general). MCM results are instead more stable and show sensitivity vs. input data uncertainty in the order of 10 to 100, highly depending on the local data samples value. To this aim, normalized sensitivity coefficients are also reported, in an attempt to attenuate the scale effects, redistributing the observed sensitivity values that, however, remain in the said range, up to about 100

    Track insulation verification and measurement

    Get PDF
    Methods for the measurement of track insulation are reviewed pointing out minimum necessary conditions and practical aspects, as well as consistency and repeatability of results. Track configuration, need of electrical sectioning and use of external electrodes or conductive structure are key parameters to determine suitable methods

    The space density of Compton-thick AGN at z~0.8 in the zCOSMOS-Bright Survey

    Full text link
    The obscured accretion phase in BH growth is a key ingredient in many models linking the AGN activity with the evolution of their host galaxy. At present, a complete census of obscured AGN is still missing. The purpose of this work is to assess the reliability of the [NeV] emission line at 3426 A to pick up obscured AGN up to z~1 by assuming that [NeV] is a reliable proxy of the intrinsic AGN luminosity and using moderately deep X-ray data to characterize the amount of obscuration. A sample of 69 narrow-line (Type 2) AGN at z=0.65-1.20 were selected from the 20k-zCOSMOS Bright galaxy sample on the basis of the presence of the [NeV] emission. The X-ray properties of these galaxies were then derived using the Chandra-COSMOS coverage of the field; the X-ray-to-[NeV] flux ratio, coupled with X-ray spectral and stacking analyses, was then used to infer whether Compton-thin or Compton-thick absorption were present in these sources. Then the [NeV] luminosity function was computed to estimate the space density of Compton-thick (CT) AGN at z~0.8. Twenty-three sources were detected by Chandra, and their properties are consistent with moderate obscuration (on average, ~a few 10^{22} cm^-2). The X-ray properties of the remaining 46 X-ray undetected Type 2 AGN were derived using X-ray stacking analysis. Current data indicate that a fraction as high as ~40% of the present sample is likely to be CT. The space density of CT AGN with logL_2-10keV>43.5 at z=0.83 is (9.1+/-2.1) 10^{-6} Mpc^{-3}, in good agreement with both XRB model expectations and the previously measured space density for objects in a similar redshift and luminosity range. We regard our selection technique for CT AGN as clean but not complete, since even a mild extinction in the NLR can suppress [NeV] emission. Therefore, our estimate of their space density should be considered as a lower limit.Comment: 10 pages, 7 figures, 2 tables, A&A, in pres

    Proposta di un protocollo pratico per la valutazione dell'indice di condizione nei mitili (M. galloprovincialis)

    Get PDF
    The indices for the yields evaluation, as well as condition index (CI), that relate the amount of the meat with shell weight are widely used both for scientific research both for shellfish farming management, representing the main tools for the evaluation of merchantable traits in bivalve mollusks. CI values changes are due to a variety of factors, including mainly food availability and physiological status but also animal health and water temperature and salinity. Different methods are used to calculate IC value. in the mussels. The present study is intended to present a simple protocol for the CI mussels (M. galloprovincialis) evaluation able to mediate scientific rigor needs with the management needs in order to adopt an uniform procedure

    A robust MPC approach for the rebalancing of mobility on demand systems

    Get PDF
    A control-oriented model for mobility-on-demand systems is here proposed. The system is first described through dynamical stochastic state-space equations, and then suitably simplified in order to obtain a controloriented model, on which two control strategies based on Model Predictive Control are designed. The first strategy aims at keeping the expected value of the number of vehicles parked in stations within prescribed bounds; the second strategy specifically accounts for stochastic fluctuations around the expected value. The model includes the possibility of weighting the control effort, leading to control solutions that may trade off efficiency and cost. The models and control strategies are validated over a dataset of logged trips of ToBike, the bike-sharing systems in the city of Turin, Italy

    Short term strength behavior of two-component backfilling in shield tunneling: comparison between standard penetrometer test results and UCS

    Get PDF
    The two-component backfilling system is the most frequently used method to fill the annular gap created during the shield machine advancement. This gap, due to the head overcut, the shield thickness and conicity and the tail brushes size should be filled continuously in order to avoid mainly surface displacement and linings movements. Nowadays this technology is the most chosen due to operative (both components are chemically and physically stable) and technical (mechanical performance start to grow up just immediately after the injection) advantages that mean money and time saving.The main mechanical parameter used for the two-component grout characterization is the uniaxial compressive strength (UCS). In order to assess this parameter, a laboratory press and suitable hardened samples are needed but, expressly at short curing time, the penetrometer use is also diffused.This research pertains the study of two-component grout uniaxial compressive strength, its evolution in function of time and its correlation with penetrometer tests data

    Analysis of the Parameters Affecting the Stiffness of Short Sisal Fiber Biocomposites Manufactured by Compression-Molding

    Get PDF
    The use of natural fiber-based composites is on the rise in many industries. Thanks to their eco-sustainability, these innovative materials make it possible to adapt the production of components, systems and machines to the increasingly stringent regulations on environmental protection, while at the same time reducing production costs, weight and operating costs. Optimizing the mechanical properties of biocomposites is an important goal of applied research. In this work, using a new numerical approach, the effects of the volume fraction, average length, distribution of orientation and curvature of fibers on the Young’s modulus of a biocomposite reinforced with short natural fibers were studied. Although the proposed approach could be applied to any biocomposite, sisal fibers and an eco-sustainable thermosetting matrix (green epoxy) were considered in both simulations and the associated experimental assessment. The results of the simulations showed the following effects of the aforementioned parameters on Young’s modulus: a linear growth with the volume fraction, nonlinear growth as the length of the fibers increased, a reduction as the average curvature increased and an increase in stiffness in the x-y plane as the distribution of fiber orientation in the z direction decreased

    Physical properties of AGN host galaxies as a probe of SMBH feeding mechanisms

    Get PDF
    Using an advanced semi analytic model (SAM) for galaxy formation, we have investigated the statistical effects of assuming two different mechanisms for triggering AGN activity on the properties of AGN host galaxies. We have considered a first accretion mode where AGN activity is triggered by disk instabilities (DI) in isolated galaxies, and a second feeding mode where such an activity is triggered by galaxy mergers and fly-by events (interactions, IT). We obtained the following results:i) for hosts with M∗≲1011M⨀M_* \lesssim 10^{11} M_{\bigodot}, both DI and IT modes are able to account for the observed AGN hosts stellar mass function; for more massive hosts, the DI scenario predicts a lower space density than the IT model, lying below the observational estimates for z>0.8.ii) The analysis of the color-magnitude diagram (CMD) of AGN hosts for redshift z < 1.5 can provide a good observational test to effectively discriminate between the DI and IT mode, since DIs are expected to yield AGN host galaxy colors skewed towards bluer colors, while in the IT scenario the majority of hosts are expected to reside in the red sequence.iii) While both IT and DI scenarios can account for AGN triggered in main sequence or starburst galaxies, DIs fail in triggering AGN activity in passive galaxies.iv) The two modes are characterized by a different duration of the AGN phase, with DIs lasting even on time scales ∼\sim Gyr, much longer with respect to the IT scenario.v) The scatter of the SFR−LbolSFR-L_{bol} relation could represent another crucial diagnostics to discriminate between the two triggering modes, since the DI scenario predicts an appreciably lower scatter of the relation than the IT scenario. vi) Disk instabilities are not able to account for the observed fraction of AGN in groups for z < 1 and clusters for z < 0.7, while the IT scenario provides a good match to observational data.Comment: Paper accepted for publication in section 4. Extragalactic astronomy of Astronomy and Astrophysic
    • …
    corecore