65 research outputs found

    Search for electron liquids with non-Abelian quasiparticles

    Full text link
    We use exact numerical diagonalization in the search of fractional quantum Hall states with non-Abelian quasiparticle statistics. For the (most promising) states in a partially filled second Landau level, the search is narrowed to the range of filling factors 7/3<νe<8/37/3 <\nu_e<8/3. In this range, the analysis of energy spectra and correlation functions, calculated including finite width and Landau level mixing, supports the prominent non-Abelian candidates at νe=5/2\nu_e=5/2 (paired Moore--Read "pfafian" state) and 12/5 (clustered Read--Rezayi "parafermion" state). Outside of this range, the noninteracting composite fermion model with four attached flux quanta is validated, yielding the family of quantum liquids with fractional, but Abelian statistics. The borderline νe=7/3\nu_e=7/3 state is shown to be adiabatically connected to the Laughlin liquid, but its short-range correlations are significantly different.Comment: 9 pages, 8 figure

    Real-Space Entanglement Spectrum of Quantum Hall States

    Full text link
    We investigate the entanglement spectra arising from sharp real-space partitions of the system for quantum Hall states. These partitions differ from the previously utilized orbital and particle partitions and reveal complementary aspects of the physics of these topologically ordered systems. We show, by constructing one to one maps to the particle partition entanglement spectra, that the counting of the real-space entanglement spectra levels for different particle number sectors versus their angular momentum along the spatial partition boundary is equal to the counting of states for the system with a number of (unpinned) bulk quasiholes excitations corresponding to the same particle and flux numbers. This proves that, for an ideal model state described by a conformal field theory, the real-space entanglement spectra level counting is bounded by the counting of the conformal field theory edge modes. This bound is known to be saturated in the thermodynamic limit (and at finite sizes for certain states). Numerically analyzing several ideal model states, we find that the real-space entanglement spectra indeed display the edge modes dispersion relations expected from their corresponding conformal field theories. We also numerically find that the real-space entanglement spectra of Coulomb interaction ground states exhibit a series of branches, which we relate to the model state and (above an entanglement gap) to its quasiparticle-quasihole excitations. We also numerically compute the entanglement entropy for the nu=1 integer quantum Hall state with real-space partitions and compare against the analytic prediction. We find that the entanglement entropy indeed scales linearly with the boundary length for large enough systems, but that the attainable system sizes are still too small to provide a reliable extraction of the sub-leading topological entanglement entropy term.Comment: 13 pages, 11 figures; v2: minor corrections and formatting change

    Detecting Non-Abelian Statistics in the nu=5/2 Fractional Quantum Hall State

    Get PDF
    In this letter we propose an interferometric experiment to detect non-Abelian quasiparticle statistics -- one of the hallmark characteristics of the Moore-Read state expected to describe the observed FQHE plateau at nu=5/2. The implications for using this state for constructing a topologically protected qubit as has been recently proposed by Das Sarma et. al. are also addressed.Comment: 5 pages, 2 eps figures v2: A few minor changes and citation corrections. In particular, the connection to cond-mat/9711087 has been clarified. v3: Minor changes: fixed references to Fig. 2, updated citations, changed a few words to conform to the version published in PR

    Screening properties and phase transitions in unconventional plasmas for Ising-type quantum Hall states

    Full text link
    Utilizing large-scale Monte-Carlo simulations, we investigate an unconventional two-component classical plasma in two dimensions which controls the behavior of the norms and overlaps of the quantum-mechanical wavefunctions of Ising-type quantum Hall states. The plasma differs fundamentally from that which is associated with the two-dimensional XY model and Abelian fractional quantum Hall states. We find that this unconventional plasma undergoes a Berezinskii-Kosterlitz-Thouless phase transition from an insulator to a metal. The parameter values corresponding to Ising-type quantum Hall states lie on the metallic side of this transition. This result verifies the required properties of the unconventional plasma used to demonstrate that Ising-type quantum Hall states possess quasiparticles with non-Abelian braiding statistics.Comment: 16 pages, 14 figures. Submitted to Physical Review

    Coulomb Blockade Doppelgangers in Quantum Hall States

    Get PDF
    In this paper, we ask the question: How well can Coulomb blockade experiments correctly identify and distinguish between different topological orders in quantum Hall states? We definitively find the answer to be: Quite poorly. In particular, we write the general expression for the spacing of resonance peaks in a simple form that explicitly displays its dependence on the conformal scaling dimensions of the systems' edge modes. This form makes transparent the general argument that the Coulomb blockade peak spacings do not provide a strongly indicative signature of the topological order of the system, since it is only weakly related to the braiding statistics. We bolster this general argument with examples for all the most physically relevant non-Abelian candidate states, demonstrating that they have Coulomb blockade doppelgangers -- candidate states at the same filling fraction with identical Coulomb blockade signatures, but dramatically different topological orders and braiding statistics.Comment: 12 pages, 1 figure; portions of this paper were formerly included in Appendix C of arXiv:0903.3108; v2: examples added, minor corrections made; v3: discussions of non-uniform filling and of hierarchical counterparts of multi-component states added, minor corrections mad

    Optimal confinement potential in quantum Hall droplets

    Full text link
    We find that the confinement potential of a few electron quantum dot can be tuned to significantly increase the overlap with certain quantum Hall trial wave functions. Besides manipulating inter-electron interaction, this approach may prove useful in quantum point contact experiments, which involve narrow constrictions.Comment: 4 pages, 1 figur

    Clebsch-Gordan and 6j-coefficients for rank two quantum groups

    Get PDF
    We calculate (q-deformed) Clebsch-Gordan and 6j-coefficients for rank two quantum groups. We explain in detail how such calculations are done, which should allow the reader to perform similar calculations in other cases. Moreover, we tabulate the q-Clebsch-Gordan and 6j-coefficients explicitly, as well as some other topological data associated with theories corresponding to rank-two quantum groups. Finally, we collect some useful properties of the fusion rules of particular conformal field theories.Comment: 43 pages. v2: minor changes and added references. For mathematica notebooks containing the various q-CG and 6j symbols, see http://arxiv.org/src/1004.5456/an

    Decay Modes of Unstable Strings in Plane-Wave String Field Theory

    Get PDF
    The cubic interaction vertex of light-cone string field theory in the plane-wave background has a simple effective form when considering states with only bosonic excitations. This simple effective interaction vertex is used in this paper to calculate the three string interaction matrix elements for states of arbitrary bosonic excitation and these results are used to examine certain decay modes on the mass-shell. It is shown that the matrix elements of one string to two string decays involving only bosonic excitations will vanish to all orders in 1/mu on the mass-shell when the number of excitations on the initial string is less than or equal to two, but in general will not vanish when the number of excitations is greater than two. Also, a truncated calculation of the mass-shell matrix elements for one string to three string decays of two excitation states is performed and suggests that these matrix elements do not vanish on the mass-shell. There is, however, a quantitative discrepancy between this last result and its (also non-vanishing) gauge theory prediction from the BMN correspondence.Comment: 11 pages; v2: references added; v3: normalization of interaction vertex and corresponding amplitudes changed by a factor of mu to reflect SFT normalization (must now divide by mu to compare with BMN dual gauge theory), and minor errors correcte

    The modular S-matrix as order parameter for topological phase transitions

    Get PDF
    We study topological phase transitions in discrete gauge theories in two spatial dimensions induced by the formation of a Bose condensate. We analyse a general class of euclidean lattice actions for these theories which contain one coupling constant for each conjugacy class of the gauge group. To probe the phase structure we use a complete set of open and closed anyonic string operators. The open strings allow one to determine the particle content of the condensate, whereas the closed strings enable us to determine the matrix elements of the modular SS-matrix, also in the broken phase. From the measured broken SS-matrix we may read off the sectors that split or get identified in the broken phase, as well as the sectors that are confined. In this sense the modular SS-matrix can be employed as a matrix valued non-local order parameter from which the low-energy effective theories that occur in different regions of parameter space can be fully determined. To verify our predictions we studied a non-abelian anyon model based on the quaternion group H=D2ˉH=\bar{D_2} of order eight by Monte Carlo simulation. We probe part of the phase diagram for the pure gauge theory and find a variety of phases with magnetic condensates leading to various forms of (partial) confinement in complete agreement with the algebraic breaking analysis. Also the order of various transitions is established.Comment: 37 page

    Non-Abelian statistics and topological quantum information processing in 1D wire networks

    Get PDF
    Topological quantum computation provides an elegant way around decoherence, as one encodes quantum information in a non-local fashion that the environment finds difficult to corrupt. Here we establish that one of the key operations---braiding of non-Abelian anyons---can be implemented in one-dimensional semiconductor wire networks. Previous work [Lutchyn et al., arXiv:1002.4033 and Oreg et al., arXiv:1003.1145] provided a recipe for driving semiconducting wires into a topological phase supporting long-sought particles known as Majorana fermions that can store topologically protected quantum information. Majorana fermions in this setting can be transported, created, and fused by applying locally tunable gates to the wire. More importantly, we show that networks of such wires allow braiding of Majorana fermions and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental setups that enable the Majorana fusion rules to be probed, along with networks that allow for efficient exchange of arbitrary numbers of Majorana fermions. This work paves a new path forward in topological quantum computation that benefits from physical transparency and experimental realism.Comment: 6 pages + 17 pages of Supp. Mat.; 10 figures. Supp. Mat. has doubled in size to establish results more rigorously; many other improvements as wel
    • …
    corecore