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Abstract: The cubic interaction vertex of light-cone string field theory in the plane-

wave background has a simple effective form when considering states with only bosonic

excitations. This simple effective interaction vertex is used in this paper to calculate the

three string interaction matrix elements for states of arbitrary bosonic excitation and these

results are used to examine certain decay modes on the mass-shell. It is shown that the

matrix elements of one string to two string decays involving only bosonic excitations will

vanish to all orders in 1/µ on the mass-shell when the number of excitations on the initial

string is less than or equal to two, but in general will not vanish when the number of

excitations is greater than two. Also, a truncated calculation of the mass-shell matrix

elements for one string to three string decays of two excitation states is performed and

suggests that these matrix elements do not vanish on the mass-shell. There is, however, a

quantitative discrepancy between this last result and its (also non-vanishing) gauge theory

prediction from the BMN correspondence.
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1. Introduction

The recent discovery of a new maximally supersymmetric solution of type-IIB supergrav-

ity [1] has led to a series of interesting developments. Obtained by taking the Penrose limit

of AdS5 × S5, this new solution is a gravitational plane-wave with Ramond-Ramond flux

given by

ds2 = −4dx+dx− − µ2xIx
I
(
dx+

)2
+ dxIdx

I , F+1234 = F+5678 ∝ µ (1.1)

where I = 1, . . . , 8. Using the light-cone GS formalism, type-IIB string theory in this

background was found to be free and exactly solvable [2, 3] despite the non-zero Ramond-

Ramond flux which makes IIB string theory in AdS5×S5 intractable. Applying the Penrose

limit allowed for the subsequent extension of the AdS/CFT correspondence to the plane-

wave background (which has become known as the BMN correspondence) by the authors

of [4]. The significance of the BMN correspondence is largely due to the fact that the exact

solvability enables both sides of the correspondence to be studied more explicitly than the

AdS/CFT correspondence. In order to incorporate string interactions in the plane-wave

background theory, the natural setting to be considered is a generalization of the Minkowski

space type-IIB light-cone gauge superstring field theory [5]. The development of the string

field theory cubic interaction vertex for the plane-wave background was carried out in a

series of papers [6]–[11] , while the extension of the BMN correspondence to the interacting

theory was initiated in [12]–[15] and formulated in [16, 17]. In this paper, the string field

theory formalism will be used to calculate the interaction matrix elements of arbitrary

three string states with only bosonic excitations. These results will be used to consider

some properties of string decay modes on the mass-shell.
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2. Matrix elements of bosonic excitations

Restricting to string states |Ψ〉 that have only bosonic excitations, the inner product of

these states with the (zero energy) fermionic vacuum |0〉b can be taken explicitly to leave

effective bosonic states b〈0|Ψ〉 = |Ψ〉a. When reducing to effective states in this manner,

the cubic interaction vertex |H3〉 reduces to an effective bosonic interaction vertex having

the greatly simplified form [18]1

|H3〉a = vPEa |0〉a (2.1)

Ea = exp


1

2

3∑

r,s=1

∞∑

m,n=−∞

8∑

I=1

αI†(r)mÑ
(r,s)
m,n α

I†
(s)n


 (2.2)

P =
α

2

3∑

r=1

∞∑

n=−∞

ω(r)n

α(r)
αI†(r)nα

J
(r)−nΠIJ (2.3)

Ñ (r,s)
m,n =





N
(r,s)
0,0 for m = n = 0

1√
2
N

(r,s)
|m|,0 for m 6= 0 , n = 0

1

2

(
N

(r,s)
|m|,|n| − e (mn)N

(r,s)
−|m|,−|n|

)
for m,n 6= 0

(2.4)

α(r) = α′p+
(r) = 2p+

(r) (2.5)

α = α(1)α(2)α(3) (2.6)

ω(r)m =
√
m2 + µ2α2

(r) (2.7)

ΠIJ = [diag(14,−14)]IJ (2.8)

where it is understood that light-cone momentum conservation in the form
∑3

s=1 α(s) = 0

is imposed on the interaction vertex and that the cubic interaction here enters the full

hamiltonian with the effective string coupling g2 = 4πµ2α2
3gs. The overall factor v is

a function of µ, α(1), α(2), and α(3) which is currently only known (by comparison with

gauge theory) to leading order for large µ to be v(µ, y) ' 1. The Neumann coefficients N
(rs)
m,n

were found explicitly in [11] and their 1/µ expansions are provided in the appendix. The

three string bosonic vacuum |0〉a = |0(1)〉a|0(2)〉a|0(3)〉a is defined such that αI(r)n|0(r)〉a = 0

for all n. Notice that the definition of Ñ
(r,s)
m,n and the symmetry N

(r,s)
m,n = N

(s,r)
n,m together

imply that Ñ
(r,s)
m,n = Ñ

(r,s)
−m,−n = Ñ

(s,r)
n,m for any m,n, r, s.

Such a simplified interaction vertex makes it relatively easy to compute interactions

between arbitrary states of only bosonic excitations. It is clear from the form of the

interaction vertex that there must be an even number of total excitations in order to have

1The BMN basis αI(r)n is exclusively used throughout this paper. The relationship between the BMN

basis and the standard oscillator basis is given by αI(r)0 = aI(r)0 and αI(r)n = 1√
2
(aI(r)|n| − ie(n)aI(r)−|n|) for

n 6= 0, where for any x ∈ R,

e(x) =

{
1 for x ≥ 0

−1 for x < 0 .

Also, the Regge slope will be set to α′ = 2 in this paper.
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a non-zero matrix element. Consider the three string state |A〉 and corresponding effective

bosonic state |A〉a with 2k total excitations (where k is any positive integer) given by

|A〉 = A |vac〉 (2.9)

|A〉a = A |0〉a (2.10)

A =

2k∏

j=1

α
Ij†

(rj)mj
(2.11)

where |vac〉 = |0〉a|0〉b is the complete (bosonic and fermionic) three string vacuum. The

states must also satisfy the condition that a physical state |Φ(r)〉 on the rth string satisfies,

which is [4, 6]
∞∑

m=−∞

mN(r)m

∣∣Φ(r)

〉
= 0 (2.12)

where N(r)m is the occupation number operator of the mth BMN mode on the rth string

(not to be confused with the Neumann vectors N
(r)
m ) given by

N(r)m =

8∑

I=1

αI†(r)mα
I
(r)m +

8∑

a=1

βa†(r)mβ
a
(r)m (2.13)

where βa†(r)m and βa(r)m are the fermionic creation and annihilation operators in the BMN

basis. (Of course, the fermionic terms can be ignored in this paper since only bosonic

excitations are being considered.) Thus, for |A〉 to be a physical state the condition:∑2k
j=1 mjδs,rj = 0 must be imposed upon it for s = 1, 2, 3.

The interaction matrix element of the three string state |A〉 is

〈A|H3〉 = a 〈A|H3〉a =
vαµ

2

1

(2k)!!

∑

σ∈S2k

k∑

j=1

Nσ,j (2.14)

Nσ,j =

(
ω(rσ(2j−1))mσ(2j−1)

µα(rσ(2j−1))
+
ω(rσ(2j))mσ(2j)

µα(rσ(2j))

)
Ñ
(rσ(2j−1),rσ(2j))
−mσ(2j−1),mσ(2j)

Ñ
(rσ(2j−1) ,rσ(2j))
mσ(2j−1),mσ(2j)

Π
I
σ(2j−1)

,I
σ(2j)Nσ (2.15)

Nσ =

k∏

j=1

Ñ
(rσ(2j−1),rσ(2j))
mσ(2j−1),mσ(2j)

δIσ(2j−1) ,Iσ(2j) . (2.16)

The overall factor 1
(2k)!! compensates for the fact that summing over the entire permutation

group S2k overcounts the distinct terms. Alternatively, 1
(2k)!!

∑
σ∈S2k

in this expression

may be replaced by
∑

σ∈G given some G ⊂ S2k chosen such that |G| = (2k − 1)!! and

{{σ(1), σ(2)} · · · {σ(2k − 1), σ(2k)}} is a distinct combination of 2-subsets of the index set

{1, . . . , 2k} for each σ ∈ G. When restricting this result to excitations along a R4 subspace

of the plane-wave’s transverse R8 directions, one can read off the Feynman rules obtained

in [19].
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3. On-shell interactions

A peculiar property of this theory is that the three string bosonic interactions of physical

states with less that six total excitations are either zero, kinematically prohibited, or kine-

matically suppressed. The term ”kinematically suppressed” in this context is used to mean

that when the mass-shell condition is imposed on a particular interaction, the 1
µ expansion

of its matrix element vanishes to all orders. The free light-cone hamiltonian operator of

the rth string is

H2(r) =
1

α(r)

∞∑

m=−∞

ω(r)mN(r)m (3.1)

so the mass-shell condition p− = H2 combined with conservation of p− for a three string

interaction of the three string state |Ψ〉 can be expressed as

3∑

r=1

∞∑

m=−∞

ω(r)m

µα(r)
N(r)m |Ψ〉 = 0 . (3.2)

For a clear example demonstrating kinematic suppression, consider the cubic interac-

tion of the three string state |Ψ4〉 = αi†(1)mα
j†
(1)−mα

i†
(3)nα

j†
(3)−n|vac〉 where i, j are distinct

with Πii = Πjj = 1 and m,n > 0. The interaction matrix element of this state is2

〈Ψ4|H3〉 =
vαµ

4

(
ω(1)m

µα(1)
+

ω(3)n

µα(3)

)((
N

(1,3)
|m|,|n|

)2
−
(
N

(1,3)
−|m|,−|n|

)2
)

(3.3)

≈ v (µ, y) (1− y) sin2 (πny)

2π2µ

√(
1 + n2

µ2

)(
1 + m2

µ2y2

) . (3.4)

The mass-shell condition for this interaction is

2

√

1 +
n2

µ2
= 2

√

1 +
m2

µ2y2
(3.5)

⇒ y =
m

n
(3.6)

and imposing the mass-shell condition makes this matrix element vanish to all orders in

the 1/µ expansion. Thus, all of the one string to two string decay modes are suppressed for

a string state with only two or less bosonic excitations. It is straightforward to show that

0-mode excitations on the 3 string only couple to 0-mode excitations on the 1 or 2 strings

and so adding 0-mode excitations to the above decay process will also produce decay modes

that are not allowed.

2The notation established in [11] is used, where ≈ indicates equality to all orders in the 1/µ expansion,

i.e. omitted terms are of order e−2πµ|α(r) |. The symbol ' is be used to indicate leading order terms. Also,

without loss of generality, a normalization can be taken such that: α(1) = y, α(2) = 1 − y, and α(3) = −1

where 0 < y < 1, and so this will be used where convenient. When this normalization is used v will be

written v(µ, y).
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In order to demonstrate that all three string interactions are not suppressed, consider

the cubic interaction of the three string state |Ψ6〉=αi†(1)mα
j†
(1)−mα

k†
(2)0α

i†
(3)nα

j†
(3)nα

k†
(3)−2n|vac〉

where i, j, k are distinct with Πii = Πjj = Πkk = 1 and m,n > 0. The matrix element for

this cubic interaction is

〈Ψ6|H3〉 =
vαµ

8
√
2
N

(2,3)
0,2n

{
2

(
ω(1)m

µα(1)
+

ω(3)n

µα(3)

)((
N

(1,3)
m,n

)2
+
(
N

(1,3)
−m,−n

)2
)
+

+

(
1 +

ω(3)2n

µα(3)

)((
N

(1,3)
m,n

)2
−
(
N

(1,3)
−m,−n

)2
)}

(3.7)

≈
vα

1/2
(2)

(
3− 2

(
ω(1)mω(3)n

µα(1)µ|α(3)|

)
−
(

ω(3)2n

µ|α(3)|

))
cos

(
πn

α(1)

|α(3)|

)
sin3

(
πn

α(1)

|α(3)|

)

2
√
2π3µ2|α(3)|1/2

(
ω(1)mω(3)n

µα(1)µ|α(3)|

)(
ω(1)m

µα(1)
− ω(3)n

µ|α(3)|

)√
ω(3)2n

µ|α(3)|

(
ω(3)2n

µ|α(3)| − 1

) . (3.8)

To leading order in 1/µ this is

〈Ψ6|H3〉 ' −
(
m2 + 3n2y2

)
(1− y)1/2 cos (πny) sin3 (πny)

2π3n (m2 − n2y2)µ
. (3.9)

Notice that

3− 2

(
ω(1)mω(3)n

µα(1)µ
∣∣α(3)

∣∣

)
−
(

ω(3)2n

µ
∣∣α(3)

∣∣

)
< 0 (3.10)

so the only possibility that would allow this matrix element to vanish to all orders in 1/µ is

if y = c/2n for c ∈ Z+ (i.e. when the overall sine or cosine term vanishes). The mass-shell

condition for this interaction is

2

√

1 +
n2

µ2
+

√

1 +
4n2

µ2
= 2

√

1 +
m2

µ2y2
+ 1

⇒ y2 =
4m2

µ2
(
2
√

1 + n2

µ2 +
√

1 + 4n2

µ2 + 1
)(

2
√

1 + n2

µ2 +
√

1 + 4n2

µ2 − 3
) (3.11)

which to leading order for large µ is y ' m/n
√
3. It is clear that the condition for kinematic

suppression of this interaction is inconsistent with the mass-shell condition, and so the decay

of the state |αi†(3)nα
j†
(3)nα

k†
(3)−2n〉 into two strings is allowed. If fact, one can see from the

general form of the three string interactions that the most likely cause of matrix elements

vanishing (to all orders in 1/µ) is the sine terms combined with mass-shell conditions such

as y = c1/c2n for c1, c2 ∈ Z+. Since the mass-shell condition of decay processes need not

satisfy this condition on y in general, this demonstrates that kinematic supression is not a

generic property of the one string to two string decay modes.

Since the decay of one to two strings is kinematically suppressed for string states with

two excitations, it is of additional interest to determine whether this is also the case for

decays into more than two strings. Computing the full matrix elements of interactions

involving more than three strings is rather complicated, so instead the truncation scheme

of [20] will be employed here with the caveat that the result may not contain the entirety

– 5 –
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of the leading order behavior. Specifically, the truncation that will be used is a restriction

of the intermediate string states to those with two excitations. The process that will be

considered here is the tree level decay from |αi†(4)nα
j†
(4)−n〉 to |α

i†
(1)mα

j†
(1)−m; 0(2); 0(3)〉 where

i, j are distinct with Πii = Πjj = 1, m,n > 0, and
∑4

r=1 α(r) = 0 (with α(r) > 0 for

r = 1, 2, 3). This decay process has the mass-shell condition α(1)/|α(4)| = m/n. Letting

∆ = 1
E−H2

, the truncated iterated H3 interation matrix element on the mass-shell is given

to all orders in 1/µ by

〈
αi†(4)nα

j†
(4)−n

∣∣∣H3∆H3

∣∣∣αi†(1)mα
j†
(1)−m; 0(2); 0(3)

〉
truncated,mass−shell

≈

≈
{
v
(
µ, α(1), α(1) + α(2)

)
v
(
µ, α(3),

∣∣α(4)

∣∣) (α(1) + α(2)

)
+

+ v
(
µ, α(1), α(1) + α(3)

)
v
(
µ, α(2),

∣∣α(4)

∣∣) (α(1) + α(3)

)}
×

×
α(2)α(3)

16π4µ2

sin2

(
πn

α(2)

|α(4)|

)

(
1 + n2

µ2α2
(4)

)3/2


π + 2

µ
∣∣α(4)

∣∣
n

arctanh




n
µ|α(4)|√
1 + n2

µ2α2
(4)





 (3.12)

where α(1) =
m
n |α(4)|, α(3) =

n−m
n |α(4)| − α(2), and α(2) can take all values between 0 and

n−m
n |α(4)|. The following sum evaluation was used in obtaining the above result3

∞∑

p=1

sin2
(
πp

α(1)

α(5)

)

ω2
(5)p

µ2α2
(5)

µ2

(
ω(4)n

µ|α(4)| −
ω(5)p

µα(5)

) ≈
πα(5)

4µ

√
1 + n2

µ2α2
(4)

+ (3.13)

+

∣∣α(4)

∣∣α(5)

2n

√
1 + n2

µ2α2
(4)

arctanh




n
µ|α(4)|√
1 + n2

µ2α2
(4)


−

− π
∣∣α(4)

∣∣α(5)

2n

√
1 + n2

µ2α2
(4)

cos

(
πn

α(5)−2α(1)

|α(4)|

)
− cos

(
πn

α(5)

|α(4)|

)

sin

(
πn

α(5)

|α(4)|

)

where α(5) represents the intermediate string momentum. Note that the evaluation of the

sum given above is valid off-shell, and that the term on the second line vanishes upon

imposing the mass-shell condition. Thus, the truncated matrix element is suppressed one

order in 1/µ (compared to the naive leading order of 1/µ expected for this term) by the

mass-shell condition, and so is not kinematically suppressed. While this suggests that the

decay process does not exhibit kinematic suppression and so should be an allowed decay

mode, the complete calculation is required for certainty. In fact, it is easy to see that the

3The sum is evaluated by writing sin2(πp
α(1)

α(5)
) as 1

2
− (−1)p 1

2
cos(πp(1 − 2

α(1)

α(5)
)), applying appro-

priate Sommerfeld-Watson transformations to the two resulting sums, and then using the fact that

F [x] =

(
coth[πµ(α(5)−α(1))x]+coth[πµα(1)x]

2

)
≈ 1 for x > 0.

– 6 –
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naive leading order behavior for intermediate string states with four bosonic excitations

is 1/µ (i.e. this is what it would be if there are no cancellations that arise in evaluating

sums), which allows for the unlikely possibility of a miraculous cancellation that leads to

kinematic suppression. The main reason for using this particular truncation scheme is

that the restriction to intermediate string states with two bosonic excitations is thought

to correspond to the restriction to impurity conserving processes in the gauge theory side

of the BMN correspondence. Specifically, if this assumption were correct the leading order

truncated matrix element would be expected to match the corresponding single-triple trace

gauge theory results found in [21, 22, 23]. Defining ys = α(s)/|α(4)| and setting |α(4)| = 1

(without loss of generality), the leading order term of the matrix element is
〈
αi†

(4)n
αj†

(4)−n

∣∣∣H3∆H3

∣∣∣αi†(1)mα
j†
(1)−m

; 0(2); 0(3)

〉
truncated,mass−shell

'

' (π + 2)

16π4µ2

(
n+m

n

)
y2

(
1− m

n
− y2

)
sin2 (πny2) . (3.14)

Dividing by the state normalization factor J
√
y1y2y3 and explicitly inserting the factor of

1
µg

2
2 to make contact with the gauge theory side of the BMN correspondence produces the

string field theory prediction of the single-triple matrix element on the mass-shell

[
Γ̃13
n;m

]

SFT
=

g2
2

2π2Jµ2

(π + 2)

8π2µ

(
n+m

m

)√
m

n
y2

(
1− m

n
− y2

)
sin2 (πny2) . (3.15)

Comparing this result to the gauge theory single-triple matrix element found in Eqn (5.51)

of [21] taken on the mass-shell

[
Γ̃13
n;m

]
GT

=
g2
2

2π2Jµ2

√
m

n
y2

(
1− m

n
− y2

)
sin2 (πny2) (3.16)

does not provide an exact match. This matching fails by a factor of (π+2)
8π2µ

(
n+m
m

)
, and while

the
(
n+m
m

)
and numerical factor could conceivably be compensated for by contributions

that were left out by the truncation, the extra 1/µ (which can be attributed to the one

order of suppression that was found for the truncated matrix element on the mass-shell)

is problematic. A cursory analysis of the contribution from intermediate states with four

excitations suggests that the complete matrix element may still contain the appropriate

leading order behavior to provide match the gauge theory results and further confirm the

BMN correspondence. This would imply that the truncation is not appropriate for this

process and brings up the question of when it is valid to apply the truncation scheme. It

should also be mentioned that if the supersymmetry operator Q4 is non-zero, there will be

an additional interaction 1
2 ({Q2, Q4}+ {Q4, Q2}) that could potentially contribute to this

decay process.

4. Conclusion

The cubic interactions for an arbitrary number of bosonic excitations in the plane-wave

type-IIB string field theory computed in this paper provides a large class of string ampli-

tudes that can be analyzed. The results were used to compute a 3→ 2+1 excitation number

– 7 –
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decay from one to two strings and show that it is not kinematically suppressed. It was also

demonstrated that the one to two string decays with bosonic excitations: n3 → n1 + n2

where n1+n2 = n3 > 2 are in general allowed, whereas none of the one to two string decay

modes are allowed for n3 ≤ 2. Additionally, the matrix element of the one to three string

decay of two excitation states 2 → 2 + 0 + 0 was calculated using a truncation scheme

that restricted the intermediate virtual string to states with two bosonic excitations. This

decay was found not to be kinematically suppressed in this truncation, which suggests that

the decay mode is allowed, however a complete calculation of the matrix element is needed

to be certain. Since the BMN correspondence has already been confirmed to leading order

in 1/µ in the three string interaction sector by comparing the pertinent string field theory

Feynman diagrams with their corresponding gauge theory Feynman diagrams [19], the re-

maining interest in verifying the correspondence (to leading order in 1/µ) is for interactions

of order g2
2 and higher in the string coupling. The failure of the attempt in this paper to

verify this correspondence in the one to three string sector using the truncated matrix ele-

ment provides further impetus for computing the complete matrix element of this process

and would indicate a deeper relation if the complete matrix element turns out to confirm

the correspondence.
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A. Neumann coefficients

For convenience, the 1/µ expansion (to all orders) of the Neumann coefficients as found

in [11] will be listed here. Using the notation

s(1)m = s(2)m = 1 , s(3)m = 2 sin

(
πm

α(1)

α(3)

)
(A.1)

the Neumann coefficients for m,n > 0 are

N
(r,s)
m,n ≈

1

2π

(−1)r(m+1)+s(n+1)

α(s)ω(r)m + α(r)ω(s)n

√∣∣α(r)α(s)

∣∣ (ω(r)m + µα(r)

) (
ω(s)n + µα(s)

)

ω(r)mω(s)n
s(r)ms(s)n

(A.2)

N
(r,s)
−m,−n ≈ −

1

2π

(−1)r(m+1)+s(n+1)

α(s)ω(r)m + α(r)ω(s)n

√∣∣α(r)α(s)

∣∣ (ω(r)m − µα(r)

) (
ω(s)n − µα(s)

)

ω(r)mω(s)n
s(r)ms(s)n

(A.3)

for m > 0, n = 0 are

N
(r,s)
m,0 ≈

(−1)r(m+1)+s

2π

√ ∣∣α(r)

∣∣
α(s)ω(r)m

(
ω(r)m + µα(r)

)s(r)m for s ∈ {1, 2} (A.4)

– 8 –
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and for m = n = 0 are

N
(r,s)
0,0 ≈ (−1)r+s

4πµ
√
α(r)α(s)

for r, s ∈ {1, 2} (A.5)

N
(r,3)
0,0 = −√α(r) for r ∈ {1, 2} . (A.6)

All other Neumann coefficients not related to these by the symmetry N
(r,s)
m,n = N

(s,r)
n,m are

zero.
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