214 research outputs found

    Photoionization of the Ne-like Si4+ ion in ground and metastable states in the 110–184-eV photon energy range

    Get PDF
    We present measurements of the absolute photoionization cross section of the neonlike Si4+ ion over the 110–184 eV photon energy range. The measurements were performed using two independent merged-beam setups at the super-ACO and ASTRID synchrotron-radiation facilities, respectively. Signals produced in the photoionization of the 2p subshell of the Si4+ ion both from the 2p6 1S0 ground state and the 2p53s 3P0,2 metastable levels were observed. Calculations of the 2p photoionization cross sections were carried out using a multi-configuration Dirac-Fock code. They give results in good agreement with the measured spectra. Comparison with other available theoretical results is also presented

    Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments

    Full text link
    Seismology of stars is strongly developing. To address this question we have formed an international collaboration OPAC to perform specific experimental measurements, compare opacity calculations and improve the opacity calculations in the stellar codes [1]. We consider the following opacity codes: SCO, CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large differences for Fe and Ni in equivalent conditions of envelopes of type II supernova precursors, temperatures between 15 and 40 eV and densities of a few mg/cm3 [2, 3, 4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar results and differ from OP ones for the lower temperatures and for spectral interval values [3]. In this work we discuss the role of Configuration Interaction (CI) and the influence of the number of used configurations. We present and include in the opacity code comparisons new HULLAC-v9 calculations [5, 6] that include full CI. To illustrate the importance of this effect we compare different CI approximations (modes) available in HULLAC-v9 [7]. These results are compared to previous predictions and to experimental data. Differences with OP results are discussed.Comment: 4 pages, 3 figures, conference Inertial Fusion Sciences and Applications, Bordeaux, 12th to 16th September 2011; EPJ web of Conferences 201

    Experimental observation and theoretical calculations of rydberg series in hollow lithium atomic states

    Get PDF
    Several extended Rydberg series have been experimentally identified in triply excited states of hollow lithium, by use of electron spectrometry and synchrotron radiation at the Advanced Light Source. Energies, partial cross sections, and quantum defects have also been calculated using the R-matrix approximation. Our results show that the two inner electrons stay in a core-excited state of given symmetry while the behavior of the third electron is mostly governed by the nuclear potential screened by the two inner electrons

    Photoelectron spectroscopy measurements and theoretical calculations of the lowest doubly hollow lithium state

    Get PDF
    We have measured, using electron spectroscopy, the lowest-energy doubly hollow lithium triply excited (3l3l′3l″) 2P state. Energies, widths, and partial cross sections have been measured and calculated using the saddle-point technique and the R-matrix approximation. Our results show good agreement between experimental and theoretical data for the energy and the width of the doubly hollow state

    High resolution measurements of partial photoionization cross sections in hollow lithium: a critical comparison with advanced many-body calculations

    Get PDF
    Photoelectron data for hollow lithium states obtained with unprecedented high spectral resolution and sensitivity are presented. A critical comparison is made with the most recent theoretical results. Partial cross sections are measured providing the first definitive test of advanced ab initio calculations for this highly excited four-body atomic system

    Radiative properties of stellar plasmas and open challenges

    Full text link
    The lifetime of solar-like stars, the envelope structure of more massive stars, and stellar acoustic frequencies largely depend on the radiative properties of the stellar plasma. Up to now, these complex quantities have been estimated only theoretically. The development of the powerful tools of helio- and astero- seismology has made it possible to gain insights on the interiors of stars. Consequently, increased emphasis is now placed on knowledge of the monochromatic opacity coefficients. Here we review how these radiative properties play a role, and where they are most important. We then concentrate specifically on the envelopes of β\beta Cephei variable stars. We discuss the dispersion of eight different theoretical estimates of the monochromatic opacity spectrum and the challenges we need to face to check these calculations experimentally.Comment: 6 pages, 5 figures, in press (conference HEDLA 2010
    corecore