14 research outputs found

    New model for system of mesoscopic Josephson contacts

    Full text link
    Quantum fluctuations of the phases of the order parameter in 2D arrays of mesoscopic Josephson junctions and their effect on the destruction of superconductivity in the system are investigated by means of a quantum-cosine model that is free of the incorrect application of the phase operator. The proposed model employs trigonometric phase operators and makes it possible to study arrays of small superconducting granules, pores filled with superfluid helium, or Josephson junctions in which the average number of particles n0n_0 (effective bosons, He atoms, and so on) is small, and the standard approach employing the phase operator and the particle number operator as conjugate ones is inapplicable. There is a large difference in the phase diagrams between arrays of macroscopic and mesoscopic objects for n0<5n_0 < 5 and U<JU<J (UU is the characteristic interaction energy of the particle per granule and JJ is the Josephson coupling constant). Reentrant superconductivity phenomena are discussed.Comment: 4 pages, 3 Postscript figure

    Extended bound states and resonances of two fermions on a periodic lattice

    Full text link
    The high-TcT_c cuprates are possible candidates for d-wave superconductivity, with the Cooper pair wave function belonging to a non-trivial irreducible representation of the lattice point group. We argue that this d-wave symmetry is related to a special form of the fermionic kinetic energy and does not require any novel pairing mechanism. In this context, we present a detailed study of the bound states and resonances formed by two lattice fermions interacting via a non-retarded potential that is attractive for nearest neighbors but repulsive for other relative positions. In the case of strong binding, a pair formed by fermions on adjacent lattice sites can have a small effective mass, thereby implying a high condensation temperature. For a weakly bound state, a pair with non-trivial symmetry tends to be smaller in size than an s-wave pair. These and other findings are discussed in connection with the properties of high-TcT_c cuprate superconductors.Comment: 21 pages, RevTeX, 4 Postscript figures, arithmetic errors corrected. An abbreviated version (no appendix) appeared in PRB on March 1, 199

    The pseudogap in underdoped high Tc superconductors in the framework of the Boson Fermion model

    Full text link
    The question of whether the pseudogap in high TcT_c cuprates is related to super conducting precursor effects or to the existence of extrinsic bosonic massive excitations is investigated on the basis of the Boson-Fermion model. The characteristic three peak structure of the electronic spectral function and the temperature dependent Fermi vector derived here are signatures for a two component scenario which can be tested by ARPES and BIS experiments.Comment: revtex version with 3 eps figures. Revised version to appear in Phys. Rev. B. 4 c programs adde

    On the fermionic signature of the lattice monopoles

    Get PDF
    We consider fermions in the field of static monopole-like configurations in the Euclidean space-time. In all the cases considered there exists an infinite number of zero modes, labeled by frequency i\omega. The existence of such modes is a manifestation of instability of the vacuum in the presence of the monopoles and massless fermions. In the Minkowski space the corresponding phenomenon is well known and is a cornerstone of the theory of the magnetic catalysis. Moreover, the well known zero mode of Jackiw and Rebbi corresponds to the limiting case, \omega = 0. We provide arguments why the chiral condensate could be linked to the density of the monopoles in the infrared cluster. A mechanism which can naturally explain the equivalence of the critical temperatures for the deconfinement and chiral transitions, is proposed. We discuss possible implications for the phenomenology of the lattice monopoles.Comment: 8 pages, RevTeX 4. An extended version, to be published in the Physical Review

    Josephson array of mesoscopic objects. Modulation of system properties through the chemical potential

    Full text link
    The phase diagram of a two-dimensional Josephson array of mesoscopic objects is examined. Quantum fluctuations in both the modulus and phase of the superconducting order parameter are taken into account within a lattice boson Hubbard model. Modulating the average occupation number n0n_0 of the sites in the system leads to changes in the state of the array, and the character of these changes depends significantly on the region of the phase diagram being examined. In the region where there are large quantum fluctuations in the phase of the superconducting order parameter, variation of the chemical potential causes oscillations with alternating superconducting (superfluid) and normal states of the array. On the other hand, in the region where the bosons interact weakly, the properties of the system depend monotonically on n0n_0. Lowering the temperature and increasing the particle interaction force lead to a reduction in the width of the region of variation in n0n_0 within which the system properties depend weakly on the average occupation number. The phase diagram of the array is obtained by mapping this quantum system onto a classical two-dimensional XY model with a renormalized Josephson coupling constant and is consistent with our quantum Path-Integral Monte Carlo calculations.Comment: 12 pages, 8 Postscript figure
    corecore