84 research outputs found

    Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae

    Get PDF
    The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive diffusion across the plasma membrane. The lipid composition of the membrane determines the rate of uptake of acetic acid, and thicker, more rigid membranes impede passive diffusion. We hypothesized that the elongation of glycerophospholipid fatty acids would lead to thicker and more rigid membranes, reducing the influx of acetic acid. Molecular dynamics simulations were used to predict the changes in membrane properties. Heterologous expression of Arabidopsis thaliana genes fatty acid elongase 1 (FAE1) and glycerol-3-phosphate acyltransferase 5 (GPAT5) increased the average fatty acid chain length. However, this did not lead to a reduction in the net uptake rate of acetic acid. Despite successful strain engineering, the net uptake rate of acetic acid did not decrease. We suggest that changes in the relative abundance of certain membrane lipid headgroups could mitigate the effect of longer fatty acid chains, resulting in a higher net uptake rate of acetic acid

    Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance

    Get PDF
    Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. n-butanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes

    Characterization of grapevine leafroll-associated virus 3 genetic variants and application towards RT-qPCR assay design

    Get PDF
    Grapevine leafroll-associated virus 3 (GLRaV-3) is the most widely prevalent and economically important of the complex of RNA viruses associated with grapevine leafroll disease (GLD). Phylogenetic studies have grouped GLRaV-3 isolates into nine different monophyletic groups and four supergroups, making GLRaV-3 a genetically highly diverse virus species. In addition, new divergent variants have been discovered recently around the world. Accurate identification of the virus is an essential component in the management and control of GLRaV-3; however, the diversity of GLRaV-3, coupled with the limited sequence information, have complicated the development of a reliable detection assay. In this study, GLRaV-3 sequence data available in GenBank and those generated at Foundation Plant Services, University of California-Davis, was used to develop a new RT-qPCR assay with the capacity to detect all known GLRaV-3 variants. The new assay, referred to as FPST, was challenged against samples that included plants infected with different GLRaV-3 variants and originating from 46 countries. The FPST assay detected all known GLRaV-3 variants, including the highly divergent variants, by amplifying a small highly conserved region in the 3' untranslated terminal region (UTR) of the virus genome. The reliability of the new RT-qPCR assay was confirmed by an enzyme linked immunosorbent assay (ELISA) that can detect all known GLRaV-3 variants characterized to date. Additionally, three new GLRaV-3 divergent variants, represented by four isolates, were identified using a hierarchical testing process involving the FPST assay, GLRaV-3 variant-specific assays and high-throughput sequencing analysis. These variants were distantly related to groups I, II, III, V, VI, VII and IX, but much similar to GLRaV-3 variants with no assigned group; thus, they may represent new clades. Finally, based on the phylogenetic analysis, a new GLRaV-3 subclade is proposed and named as group X.Alfredo Diaz-Lara, Vicki Klaassen, Kristian Stevens, Mysore R. Sudarshana, Adib Rowhani ... Nuredin Habili ... et al

    Development of new inhibitors for N-acylethanolamine-hydrolyzing acid amidase as promising tool against bladder cancer

    No full text
    The endocannabinoid system is a signaling system involved in a wide range of biological effects. Literature strongly suggests the endocannabinoid system role in the pathogenesis of cancer and that its pharmacological activation produces therapeutic benefits. Last research promotes the endocannabinoid system modulation by inhibition of endocannabinoids hydrolytic enzymes instead of direct activation of endocannabinoid receptors to avoid detrimental effects on cognition and motor control. Here we report the identification of N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitors able to reduce cell proliferation and migration and cause cell death on different bladder cancer cell lines. These molecules were designed, synthesized and characterized and active compounds were selected by a fluorescence high-throughput screening method set-up on human recombinant NAAA that also allows to characterize the mechanism of inhibition. Together our results suggest an important role for NAAA in cell migration and in inducing tumor cell death promoting this enzyme as pharmacological target against bladder cancer

    Plasma membrane as a crucial player in acetic acid effect on yeast

    No full text
    Weak organic acids such as formic, acetic or lactic acid are known inhibitors of microbial growth and fermentation. Acetic acid toxicity to yeast cells has been explained by different theories, involving specific signaling effects triggering an active cell death program, reduction of intracellular pH and acetate anion accumulation. Regardless of the fact whether the actual effect of acetate involves one of these mechanisms or a combination thereof, acetic acid inhibits yeast metabolism and affects yeast viability. This has a high impact on the feasibility of the new generation of fermentation processes, based on the naturally acetic acid-rich lignocellulosic substrates. It is therefore highly desirable to obtain a strain with increased capacity of coping with high acetic acid concentrations in the fermentation medium. Acetic acid is thought to be internalized by yeast cells in its undissociated form, by crossing the hydrophobic barrier of plasma membrane. Thus, in our work we focused on the investigation of membrane properties and how these influence the tolerance of yeast to acetic acid. First, we demonstrated with lipidomics analysis of membrane lipids that the yeast Zygosaccharomyces bailii, showing extraordinary tolerance to acetic acid, has a plasma membrane which is rich in sphingolipids. Next, we combined membrane molecular dynamics and in vivo measurements to confirm the specific role of sphingolipids in altering the permeability of plasma membrane to acetic acid. Finally, we investigated the effect of alcohols on the acetic acid permeation rate through the membrane. Our ultimate goal is to engineer the membrane composition of an industrial yeast strain towards reduced permeability, in order to obtain higher acetic acid tolerance
    • …
    corecore