34 research outputs found

    Ellipticity of Rayleigh waves in basin and hard-rock sites in Northern Italy

    Get PDF
    We measure ellipticity of teleseismic Rayleigh waves at 95 seismic stations in Northern Italy, for wave period between 10 and 110 s, using an automatic technique and a large volume of high-quality seismic recordings from over 500 global earthquakes that occurred in 2008–2014. Northern Italy includes a wide range of crustal structures, from the wide and deep Po Plain sedimentary basin to outcropping sedimentary and crystalline rocks in the Northern Apennines and Alps. It thus provides an excellent case for studying the influence of shallow earth structure on polarization of surface waves. The ellipticity measurements show excellent spatial correlation with geological features in the region, such as high ellipticity associated with regions of low seismic velocity in the Po Plain and low ellipticity values in faster, hard rock regions in the Alps and Apennine mountains. Moreover, the observed ellipticity values also relate to the thickness of the basement, as highlighted by observed differences beneath the Alps and the Apennines. Comparison between observations and predicted ellipticity from a reference crustal model of the region show substantial fit, particularly for T ∼ 38 s data. Discrepancy for shorter wave period suggests that slight modifications of the model are needed, and that the ellipticity measurements could help to better constrain the shallow crustal structure of the region. Predictions for the Po Plain are larger than the observations by a factor of four or more and transition from retrograde to prograde Rayleigh wave motion at the surface for periods of T ∼ 10–13 s is predicted for seismic stations in the plain. Analysis of corresponding real data indicates a possible detection of teleseismic prograde particle motion, but the weak teleseismic earthquake signals are mixed with ambient noise signals at the predicted, short, transition periods. Detection of the period of polarity inversion from the joint analysis of earthquake and ambient noise ellipticity measurements may provide further, stringent, constraints on the structure of sedimentary basins

    Crustal structure of northern Italy from the ellipticity of Rayleigh waves

    Get PDF
    Northern Italy is a diverse geological region, including the wide and thick Po Plain sedimentary basin, which is bounded by the Alps and the Apennines. The seismically slow shallow structure of the Po Plain is difficult to retrieve with classical seismic measurements such as surface wave dispersion, yet the detailed structure of the region greatly affects seismic wave propagation and hence seismic ground shaking. Here we invert Rayleigh wave ellipticity measurements in the period range 10–60 s for 95 stations in northern Italy using a fully non linear approach to constrain vertical vS,vPvS,vP and density profiles of the crust beneath each station. The ellipticity of Rayleigh wave ground motion is primarily sensitive to shear-wave velocity beneath the recording station, which reduces along-path contamination effects. We use the 3D layering structure in MAMBo, a previous model based on a compilation of geological and geophysical information for the Po Plain and surrounding regions of northern Italy, and employ ellipticity data to constrain vS,vPvS,vP and density within its layers. We show that ellipticity data from ballistic teleseismic wave trains alone constrain the crustal structure well. This leads to MAMBo-E, an updated seismic model of the region’s crust that inherits information available from previous seismic prospection and geological studies, while fitting new seismic data well. MAMBo-E brings new insights into lateral heterogeneity in the region’s subsurface. Compared to MAMBo, it shows overall faster seismic anomalies in the region’s Quaternary, Pliocene and Oligo-Miocene layers and better delineates the seismic structures of the Po Plain at depth. Two low velocity regions are mapped in the Mesozoic layer in the western and eastern parts of the Plain, which seem to correspond to the Monferrato sedimentary basin and to the Ferrara-Romagna thrust system, respectively

    Crustal structure of the Azores Archipelago from Rayleigh wave ellipticity data

    Get PDF
    Determining the crustal structure of ocean island volcanoes is important to understand the formation and tectonic evolution of the oceanic lithosphere and tectonic swells in marine settings, and to assess seismic hazard in the islands. The Azores Archipelago is located near a triple junction system and is possibly under the influence of a mantle plume, being at the locus of a wide range of geodynamic processes. However, its crustal structure is still poorly constrained and debated due to the limited seismic coverage of the region and the peculiar linear geometry of the islands. To address these limitations, in this study we invert teleseismic Rayleigh wave ellipticity measurements for 1-D shear wave speed (VS) crustal models of the Azores Archipelago. Moreover, we test the reliability of these new models by using them in independent moment tensor inversions of local seismic data and demonstrate that our models improve the waveform fit compared to previous models. We find that data from the westernmost seismic stations used in this study require a shallower Moho depth (∼10 km) than data from stations in the eastern part of the archipelago (∼13–16 km). This apparent increase in the Moho depth with increasing distance from the mid-Atlantic ridge (MAR) is expected. However, the rate at which Moho deepens away from the MAR is greater than that predicted from a half-space cooling model, suggesting that local tectonic perturbations have modified crustal structure. The 1-D VS models obtained beneath the westernmost seismic stations also show higher wave speeds than for the easternmost stations, which correlates well with the ages of the islands except Santa Maria Island. We interpret the relatively low VS profile found beneath Santa Maria Island as resulting from underplating, which agrees with previous geological studies of the island. Compared to a recent receiver function study of the region, the shallow structure (top ∼2 km) in our models shows lower shear wave speed, which may have important implications for future hazard studies of the region. More generally, the new seismic crustal models we present in this study will be useful to better understand the tectonics, seismicity, moment tensors and strong ground motions in the region

    Constraints on the Cryohydrological Warming of Firn and Ice in Greenland From Rayleigh Wave Ellipticity Data

    Get PDF
    Rayleigh wave ellipticity measurements from seismic ambient noise recorded on the Greenland Ice Sheet (GrIS) show complex and anomalous behavior at wave periods sensitive to ice (T < 3–4 s). To understand these complex observations, we compare them with synthetic ellipticity measurements obtained from synthetic ambient noise computed for various seismic velocity and attenuation models, including surface wave overtone effects. We find that in dry snow conditions within the interior of the GrIS, to first order the anomalous ellipticity observations can be explained by ice models associated with the accumulation and densification of snow into firn. We also show that the distribution of ellipticity measurements is strongly sensitive to seismic attenuation and the thermal structure of the ice. Our results suggest that Rayleigh wave ellipticity is well suited for monitoring changes in firn properties and thermal composition of the Greenland and Antarctic ice sheets in a changing climate

    Uppermost crustal structure regulates the flow of the Greenland Ice Sheet

    Get PDF
    The flow of the Greenland Ice Sheet is controlled by subglacial processes and conditions that depend on the geological provenance and temperature of the crust beneath it, neither of which are adequately known. Here we present a seismic velocity model of the uppermost 5 km of the Greenlandic crust. We show that slow velocities in the upper crust tend to be associated with major outlet glaciers along the ice-sheet margin, and elevated geothermal heat flux along the Iceland hotspot track inland. Outlet glaciers particularly susceptible to basal slip over deformable subglacial sediments include Jakobshavn, Helheim and Kangerdlussuaq, while geothermal warming and softening of basal ice may affect the onset of faster ice flow at Petermann Glacier and the Northeast Greenland Ice Stream. Interactions with the solid earth therefore control the past, present and future dynamics of the Greenland Ice Sheet and must be adequately explored and implemented in ice sheet models

    Constraining S-wave velocity using Rayleigh wave ellipticity from polarization analysis of seismic noise

    Get PDF
    We develop a new method for measuring ellipticity of Rayleigh waves from ambient noise records by degree-of-polarization (DOP) analysis. The new method, named DOP-E, shows a good capability to retrieve accurate ellipticity curves separated from incoherent noise. In order to validate the method we perform synthetic tests simulating noise in a 1-D earth model. We also perform measurements on real data from Antarctica and Northern Italy. Observed curves show a good fit with measurements from earthquake records and with theoretical ellipticity curves. The inversion of real data measurements for vS structure shows a good agreement with previous models. In particular, the shear-wave structure beneath Concordia station shows no evidence of a significant layer of liquid water at the base of the ice. The new method can be used to measure ellipticity at high frequency and therefore it will allow the imaging of near-surface structure, and possibly of temporal changes in subsurface properties. It promises to be useful to study near-surface processes in a wide range of geological settings, such as volcanoes, fault zones and glaciers

    Crustal structure beneath Portugal from teleseismic Rayleigh Wave Ellipticity

    No full text
    Up until now, Portugal lacked a countrywide shear velocity model sampling short length-scale crustal structure, which limits interpretations of seismicity and tectonics, and predictions of strong ground motion. In turn, such interpretations and predictions are important to help mitigate risk of destruction from future large on- and offshore earthquakes similar to those that Portugal has experienced in the past (e.g. the Mw 8.5–8.7 tsunamigenic event in 1755). In this study, we measured teleseismic Rayleigh Wave Ellipticity (RWE) from 33 permanent and temporary seismic stations in Portugal with wave periods between 15 s and 60 s, and inverted it for 1-D models of shear wave velocity (Vs) structure beneath each station using a fully non-linear Monte Carlo method. Because RWE is strongly sensitive to the uppermost few kilometres of the crust, both RWE measurements and Vs models are spatially correlated with surface geology in Portugal. For instance, we find that sedimentary basins produced by rifting that had begun in the Mesozoic such as the Lusitanian Basin (LB) and the Lower Tagus-Sado Basin (LTSB) are characterised by higher RWE (lower Vs). Interestingly, we observe similar RWE (and Vs) values in the interior of the Central Iberian Zone (CIZ), which is a metamorphic belt of Paleozoic age. Together with reduced crustal thickness previously estimated for the same parts of the CIZ, this suggests that the CIZ might have experienced an episode of extension possibly simultaneous to Mesozoic rifting. The Galicia-Tras-os-Montes-Zone (GTMZ) that has undergone polyphased deformation since the Paleozoic is characterised by the lowest RWE (highest Vs) in Portugal. Ossa Morena Zone and the South Portuguese Zone exhibit intermediate Vs values when compared to that of basins and the GTMZ. Our crustal Vs model can be used to provide new insights into the tectonics, seismicity and strong ground motion in Portugal

    Investigating the Antarctic subglacial liquid water layer using the ellipticity of Rayleigh waves from polarization analysis of seismic noise

    No full text
    EGU General Assembly in Viena, Austria,7–12 April 2019We investigate the seismic structure of the uppermost ice and crustal layers beneath the Concordia station in Antarctica using a new method based on the inversion of ellipticity of Rayleigh waves from ambient noise by degree-of-polarization analysis (DOP-E). The new technique, validated by various synthetic tests, shows a good capability of separating ambient noise containing polarized Rayleigh waves from noise containing Love waves and uncorrelated noise. It also gives information on the azimuthal direction of the sources, giving the possibility to better characterise the ambient noise sources. We apply this technique to 1 month of continuous noise record in the period band 2 – 10 s, and complement such analysis with measurement of Rayleigh-wave ellipticity on earthquake data (in the period band 10 – 60 s). Results show no evidence of a liquid water layer beneath the ice directly beneath the station confirming the results from previous studies. To further validate this result we perform a synthetic test demonstrating that this technique is able to resolve a thin (>100m) liquid water layer at the base of the ice (3.5km). The DOP-E technique could be a new tool to better illuminate the uppermost crustal layers. Since DOP-E is a completely single-station technique, it can be used when a dense seismic array is not available. It can also be used to monitor possible transients in the shear-waves velocity in a wide range of geological settings such as volcanoes, fault zones and glaciers

    The anatomy of uppermost mantle shear-wave speed anomalies in the western U.S. from surface-wave amplification

    Get PDF
    We build SWUS-amp, a three-dimensional shear-wave speed model of the uppermost mantle of the western U.S. using Rayleigh wave amplification measurements in the period range of 35–125 s from teleseismic earthquakes. This represents the first-ever attempt to invert for velocity structures using Rayleigh wave amplification data alone. We use over 350,000 Rayleigh wave amplitude measurements, which are inverted using a Monte Carlo technique including uncertainty quantification. Being a local seismic observable, Rayleigh wave amplification is little affected by path-averaged effects and in principle has stronger depth resolution than classical seismic observables, such as surface wave dispersion data. SWUS-amp confirms shallow mantle heterogeneities found in previous models. In the top 100 km of the mantle, we observe low-velocity anomalies associated with Yellowstone and the Basin & Range province, as well as a fast-velocity anomaly underneath the Colorado Plateau, where a strong velocity gradient at its edges shows a drastic contrast with its surroundings. SWUS-amp also gives additional insights into the current state of the uppermost mantle in the region. We image a high-velocity anomaly beneath the high-topography Wyoming province with a maximum depth extent of about 150–170 km, which is shallower than in previous tomographic models, and resolves previous inconsistencies with geological information. Beneath the Snake River Plain, a finger-like low-velocity anomaly dips to the west, suggesting lateral flow in the region. Below about 150 km depth, SWUS-amp shows a north-south dichotomy in shear-wave speed structure, with the northern region showing mostly high-velocity anomalies, whereas the southern region shows low-velocity anomalies. This is consistent with the continuous subduction history of the western U.S. and with the recent extension and uplift of the southern region

    Constraining S -wave velocity using Rayleigh wave ellipticity from polarization analysis of seismic noise

    No full text
    We develop a new method for measuring ellipticity of Rayleigh waves from ambient noise records by degree-of-polarization (DOP) analysis. The new method, named DOP-E, shows a good capability to retrieve accurate ellipticity curves separated from incoherent noise. In order to validate the method we perform synthetic tests simulating noise in a 1-D earth model. We also perform measurements on real data from Antarctica and Northern Italy. Observed curves show a good fit with measurements from earthquake records and with theoretical ellipticity curves. The inversion of real data measurements for v S structure shows a good agreement with previous models. In particular, the shear-wave structure beneath Concordia station shows no evidence of a significant layer of liquid water at the base of the ice. The new method can be used to measure ellipticity at high frequency and therefore it will allow the imaging of near-surface structure, and possibly of temporal changes in subsurface properties. It promises to be useful to study near-surface processes in a wide range of geological settings, such as volcanoes, fault zones and glaciers. © The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society.This work received a fundamental contribution by TIDES COST Action ES1401 (in particular by Short Term Scientific Mission program). A.M.G. Ferreira and A. Berbellini are also grateful for funding from NERC project NE/N011791/1. M. Schimmel acknowledges funding by the Spanish MISTERIOS project (CGL2013-48601-C2-1-R).Peer reviewe
    corecore