3 research outputs found

    Investigations of the long-term effects of LII on soot and bath gas

    No full text
    <p>A combination of high-repetition rate imaging, laser extinction measurements, two-color soot pyrometry imaging, and high-resolution transmission electron microscopy of thermophoretically sampled soot is used to investigate the long-term and permanent effects of rapid heating of in-flame soot during laser-induced incandescence (LII). Experiments are carried out on a laminar non-premixed co-annular ethylene/air flame with various laser fluences. The high-repetition rate images clearly show that the heated and the neighboring laser-border zones undergo a permanent transformation after the laser pulse, and advect vertically with the flow while the permanent marking is preserved. The soot volume fraction at the heated zone reduces due to the sublimation of soot and the subsequent enhanced oxidation. At the laser-border zones, however, optical thickness increases that may be due to thermophoretic forces drawing hot particles towards relatively cooler zones and the rapid compression of the bath gas induced by the pressure waves created by the expansion of the desorbed carbon clusters. Additionally sublimed carbon clusters can condense onto existing particles and contribute to increase of the optical thickness. Time-resolved two-color pyrometry imaging show that the increased temperature of soot both in the heated and neighboring laser-border zones persists for several milliseconds. This can be associated to the increase in the bath-gas temperature, and a change in the wavelength-dependent emissivity of soot particles induced by the thermal annealing of soot. Ex-situ analysis show that the lattice structure of the soot sampled at the laser-border zones tend to change and soot becomes more graphitic. This may be attributed to thermal annealing induced by elevated temperature.</p> <p>Copyright © 2017 American Association for Aerosol Research</p

    Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    Full text link
    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m−2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition

    In Situ Metal Imaging and Zn Ligand-Speciation in a Soil-Dwelling Sentinel: Complementary Electron Microprobe and Synchrotron Microbeam X‑ray Analyses

    No full text
    Understanding the relationships between accumulated metal speciation in cells and tissues of ecologically significant taxa such as earthworms will improve risk assessments. Synchrotron-based μ-focus X-ray spectroscopy was used to detect, localize, and determine ligand-speciation of Zn and Pb in thin sections of two epigeic earthworm species collected from a Pb/Zn-mine soil. The findings indicated that Zn and Pb partition predominantly as typical hard acids (i.e., strong affinities for O-donors) within liverlike chloragocytes. Moreover, Zn speciation was very similar in the chloragog and intestinal epithelia but differed subtly in the kidneylike nephridial tubules; neither Zn nor Pb was detectable in the ventral nerve cord. High resolution X-ray mapping of high pressure-frozen, ultrathin, freeze-substituted sections in a transmission electron microscope (TEM), combined with conventional TEM structural analysis, identified a new cell type packed with highly organized rough endoplasmic reticulum and containing deposits of Cd (codistributed with S); there was no evidence that these cells are major depositories of Zn or Pb. These data may be used in a systems biology approach to assist in the interpretation of metal-evoked perturbations in whole-worm transcriptome and metabolome profiles
    corecore