354 research outputs found
Some Remarks on the Model Theory of Epistemic Plausibility Models
Classical logics of knowledge and belief are usually interpreted on Kripke
models, for which a mathematically well-developed model theory is available.
However, such models are inadequate to capture dynamic phenomena. Therefore,
epistemic plausibility models have been introduced. Because these are much
richer structures than Kripke models, they do not straightforwardly inherit the
model-theoretical results of modal logic. Therefore, while epistemic
plausibility structures are well-suited for modeling purposes, an extensive
investigation of their model theory has been lacking so far. The aim of the
present paper is to fill exactly this gap, by initiating a systematic
exploration of the model theory of epistemic plausibility models. Like in
'ordinary' modal logic, the focus will be on the notion of bisimulation. We
define various notions of bisimulations (parametrized by a language L) and show
that L-bisimilarity implies L-equivalence. We prove a Hennesy-Milner type
result, and also two undefinability results. However, our main point is a
negative one, viz. that bisimulations cannot straightforwardly be generalized
to epistemic plausibility models if conditional belief is taken into account.
We present two ways of coping with this issue: (i) adding a modality to the
language, and (ii) putting extra constraints on the models. Finally, we make
some remarks about the interaction between bisimulation and dynamic model
changes.Comment: 19 pages, 3 figure
Automated Verification of Quantum Protocols using MCMAS
We present a methodology for the automated verification of quantum protocols
using MCMAS, a symbolic model checker for multi-agent systems The method is
based on the logical framework developed by D'Hondt and Panangaden for
investigating epistemic and temporal properties, built on the model for
Distributed Measurement-based Quantum Computation (DMC), an extension of the
Measurement Calculus to distributed quantum systems. We describe the
translation map from DMC to interpreted systems, the typical formalism for
reasoning about time and knowledge in multi-agent systems. Then, we introduce
dmc2ispl, a compiler into the input language of the MCMAS model checker. We
demonstrate the technique by verifying the Quantum Teleportation Protocol, and
discuss the performance of the tool.Comment: In Proceedings QAPL 2012, arXiv:1207.055
Logics of Informational Interactions
The pre-eminence of logical dynamics, over a static and purely propositional view of Logic, lies at the core of a new understanding of both formal epistemology and the logical foundations of quantum mechanics. Both areas appear at first sight to be based on purely static propositional formalisms, but in our view their fundamental operators are essentially dynamic in nature. Quantum logic can be best understood as the logic of physically-constrained informational interactions (in the form of measurements and entanglement) between subsystems of a global physical system. Similarly, (multi-agent) epistemic logic is the logic of socially-constrained informational interactions (in the form of direct observations, learning, various forms of communication and testimony) between “subsystems” of a social system. Dynamic Epistemic Logic (DEL) provides us with a unifying setting in which these informational interactions, coming from seemingly very different areas of research, can be fully compared and analyzed. The DEL formalism comes with a powerful set of tools that allows us to make the underlying dynamic/interactive mechanisms fully transparent
- …