1,263 research outputs found

    Mid-infrared intersubband absorption from p-Ge quantum wells grown on Si substrates

    Get PDF
    Mid-infrared intersubband absorption from p-Ge quantum wells with Si0.5Ge0.5 barriers grown on a Si substrate is demonstrated from 6 to 9 μm wavelength at room temperature and can be tuned by adjusting the quantum well thickness. Fourier transform infra-red transmission and photoluminescence measurements demonstrate clear absorption peaks corresponding to intersubband transitions among confined hole states. The work indicates an approach that will allow quantum well intersubband photodetectors to be realized on Si substrates in the important atmospheric transmission window of 8–13 μm

    Mid-Infrared Intersubband Absorption from P-Ge Quantum Wells on Si

    Get PDF
    Mid-infrared intersubband absorption from p-Ge quantum wells with Si0.5Ge0.5 barriers grown on a Si substrate is demonstrated from 6 to 9 μm wavelength at room temperature and can be tuned by adjusting the quantum well thickness. Fourier transform infra-red spectroscopy measurements demonstrate clear absorption peaks corresponding to intersubband transitions among confined hole states. The work indicates an approach that will allow quantum well intersubband photodetectors to be realized on Si substrates in the important atmospheric transmission window of 8–13 μm

    Random Graph-Homomorphisms and Logarithmic Degree

    Get PDF
    A graph homomorphism between two graphs is a map from the vertex set of one graph to the vertex set of the other graph, that maps edges to edges. In this note we study the range of a uniformly chosen homomorphism from a graph G to the infinite line Z. It is shown that if the maximal degree of G is `sub-logarithmic', then the range of such a homomorphism is super-constant. Furthermore, some examples are provided, suggesting that perhaps for graphs with super-logarithmic degree, the range of a typical homomorphism is bounded. In particular, a sharp transition is shown for a specific family of graphs C_{n,k} (which is the tensor product of the n-cycle and a complete graph, with self-loops, of size k). That is, given any function psi(n) tending to infinity, the range of a typical homomorphism of C_{n,k} is super-constant for k = 2 log(n) - psi(n), and is 3 for k = 2 log(n) + psi(n)

    Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44.

    Get PDF
    Sulfatase modifying factor 1 (SUMF1) encodes for the formylglicine generating enzyme, which activates sulfatases by modifying a key cysteine residue within their catalytic domains. SUMF1 is mutated in patients affected by multiple sulfatase deficiency, a rare recessive disorder in which all sulfatase activities are impaired. Despite the absence of canonical retention/retrieval signals, SUMF1 is largely retained in the endoplasmic reticulum (ER), where it exerts its enzymatic activity on nascent sulfatases. Part of SUMF1 is secreted and paracrinally taken up by distant cells. Here we show that SUMF1 interacts with protein disulfide isomerase (PDI) and ERp44, two thioredoxin family members residing in the early secretory pathway, and with ERGIC-53, a lectin that shuttles between the ER and the Golgi. Functional assays reveal that these interactions are crucial for controlling SUMF1 traffic and function. PDI couples SUMF1 retention and activation in the ER. ERGIC-53 and ERp44 act downstream, favoring SUMF1 export from and retrieval to the ER, respectively. Silencing ERGIC-53 causes proteasomal degradation of SUMF1, while down-regulating ERp44 promotes its secretion. When over-expressed, each of three interactors favors intracellular accumulation. Our results reveal a multistep control of SUMF1 trafficking, with sequential interactions dynamically determining ER localization, activity and secretion

    Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Get PDF
    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm−3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm−3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved

    Do gaming motives mediate between psychiatric symptoms and problematic gaming? An empirical survey study

    Get PDF
    Previous research has suggested that motives play an important role in several potentially addictive activities including online gaming. The aims of the present study were to (i) examine the mediation effect of different online gaming motives between psychiatric distress and problematic online gaming, and (ii) validate Italian versions of the Problematic Online Gaming Questionnaire, and the Motives for Online Gaming Questionnaire. Data collection took place online and targeted Italian-speaking online gamers active on popular Italian gaming forums, and/or Italian groups related to online games on social networking sites. The final sample size comprised 327 participants (mean age 23.1 years [SD = 7.0], 83.7% male). The two instruments showed good psychometric properties in the Italian sample. General psychiatric distress had both a significant direct effect on problematic online gaming and a significant indirect effect via two motives: escape and fantasy. Psychiatric symptoms are both directly and indirectly associated with problematic online gaming. Playing online games to escape and to avoid everyday problems appears to be a motivation associated with psychiatric distress and in predicting problematic gaming

    Oxygen Consumption in South African Sauvignon Blanc Wines: Role of Glutathione, Sulphur Dioxide and Certain Phenolics

    Get PDF
    The aim of this research was to investigate the interaction between sulphur dioxide, glutathione (GSH) andcertain phenols in the presence of oxygen in a synthetic wine and in clarified Sauvignon blanc wine. In thisstudy, the clarified wine, from which most of the phenols had been removed, was compared to syntheticwine solution, with both mediums being enriched with caffeic acid to investigate the effect of different levelsof sulphur dioxide and GSH on oxygen consumption. Moreover, thirteen young South African Sauvignonblanc wines with different levels of sulphur dioxide were oxygenated, and the oxygen consumption andphenolic and colour changes were monitored over time. The results show that oxygen consumption wasinfluenced greatly by the presence of sulphur dioxide and, to a lesser extent, by the presence of GSH,with both compounds decreasing during the course of the experiment. During oxidation, an increasewas observed in glutathionyl caffeic acid, as well as in oxidised glutathione (GSSG); however, this didnot coincide with the percentage decrease in GSH. Oxidation further led to an increase in absorbancemeasurements at 420 and 440 nm (yellow-orange colour), which were reduced by the presence of SO2. Alarge variation was also observed in the oxygen consumption of the young wines, with this rate increasingwith an increase in SO2 concentration. Positive correlations were also observed between oxygen, SO2, GSHand Cu concentrations, which were again negatively correlated with absorbance at 420 and 440 nm andGSSG concentrations

    Genomic imbalances are confined to non-proliferating cells in paediatric patients with acute myeloid leukaemia and a normal or incomplete karyotype

    Get PDF
    Copyright @ 2011 Ballabio et al.Leukaemia is often associated with genetic alterations such as translocations, amplifications and deletions, and recurrent chromosome abnormalities are used as markers of diagnostic and prognostic relevance. However, a proportion of acute myeloid leukaemia (AML) cases have an apparently normal karyotype despite comprehensive cytogenetic analysis. Based on conventional cytogenetic analysis of banded chromosomes, we selected a series of 23 paediatric patients with acute myeloid leukaemia and performed whole genome array comparative genome hybridization (aCGH) using DNA samples derived from the same patients. Imbalances involving large chromosomal regions or entire chromosomes were detected by aCGH in seven of the patients studied. Results were validated by fluorescence in situ hybridization (FISH) to both interphase nuclei and metaphase chromosomes using appropriate bacterial artificial chromosome (BAC) probes. The majority of these copy number alterations (CNAs) were confirmed by FISH and found to localize to the interphase rather than metaphase nuclei. Furthermore, the proliferative states of the cells analyzed by FISH were tested by immunofluorescence using an antibody against the proliferation marker pKi67. Interestingly, these experiments showed that, in the vast majority of cases, the changes appeared to be confined to interphase nuclei in a non-proliferative status.This work was supported by a grant from Leukaemia Research UK (grant no. 0253). SJLK and RR were supported by the NIHR Biomedical Research Centre, Oxford, with funding from the Department of Health’s NIHR Biomedical Research Centres funding schemeThis article is available through the Brunel Open Access Publishing Fund

    Mid-Infrared Plasmonic Platform Based on n-Doped Ge-on-Si: Molecular Sensing with Germanium Nano-Antennas on Si

    Get PDF
    CMOS-compatible, heavily-doped semiconductor films are very promising for applications in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate n-type doped germanium epilayers grown on Si substrates. We design and realize Ge nanoantennas on Si substrates demonstrating the presence of localized plasmon resonances, and exploit them for molecular sensing in the mid-infrared

    Ge/SiGe parabolic quantum wells

    Get PDF
    Quantum wells with parabolic confining potentials allow the realization of semiconductor heterostructures mimicking the physical properties of a quantum harmonic oscillator. Here we report the attempt of attaining such parabolic quantum wells (PQWs) within the Ge/SiGe material platform. Multiple PQWs featuring different widths and composition have been epitaxially grown and characterized by means of high-resolution x-ray diffraction and scanning transmission electron microscopy. The compositional profile is seen to deviate slightly from an ideal parabola, but the quantum confined states are almost equally spaced within the valence and conduction band as indicated by photoreflectance measurements and k . p modelling
    • …
    corecore