11,315 research outputs found

    Subgraphs and Colourability of Locatable Graphs

    Full text link
    We study a game of pursuit and evasion introduced by Seager in 2012, in which a cop searches the robber from outside the graph, using distance queries. A graph on which the cop wins is called locatable. In her original paper, Seager asked whether there exists a characterisation of the graph property of locatable graphs by either forbidden or forbidden induced subgraphs, both of which we answer in the negative. We then proceed to show that such a characterisation does exist for graphs of diameter at most 2, stating it explicitly, and note that this is not true for higher diameter. Exploring a different direction of topic, we also start research in the direction of colourability of locatable graphs, we also show that every locatable graph is 4-colourable, but not necessarily 3-colourable.Comment: 25 page

    Subdivisions in the Robber Locating Game

    Get PDF
    We consider a game in which a cop searches for a moving robber on a graph using distance probes, which is a slight variation on one introduced by Seager. Carragher, Choi, Delcourt, Erickson and West showed that for any n-vertex graph GG there is a winning strategy for the cop on the graph G1/mG^{1/m} obtained by replacing each edge of GG by a path of length mm, if mnm \geqslant n. They conjectured that this bound was best possible for complete graphs, but the present authors showed that in fact the cop wins on K1/mK^{1/m} if and only if mn/2m \geqslant n/2, for all but a few small values of nn. In this paper we extend this result to general graphs by proving that the cop has a winning strategy on G1/mG^{1/m} provided mn/2m \geqslant n/2 for all but a few small values of nn; this bound is best possible. We also consider replacing the edges of GG with paths of varying lengths.Comment: 13 Page

    Locating a robber with multiple probes

    Get PDF
    We consider a game in which a cop searches for a moving robber on a connected graph using distance probes, which is a slight variation on one introduced by Seager. Carragher, Choi, Delcourt, Erickson and West showed that for any nn-vertex graph GG there is a winning strategy for the cop on the graph G1/mG^{1/m} obtained by replacing each edge of GG by a path of length mm, if mnm\geq n. The present authors showed that, for all but a few small values of nn, this bound may be improved to mn/2m\geq n/2, which is best possible. In this paper we consider the natural extension in which the cop probes a set of kk vertices, rather than a single vertex, at each turn. We consider the relationship between the value of kk required to ensure victory on the original graph and the length of subdivisions required to ensure victory with k=1k=1. We give an asymptotically best-possible linear bound in one direction, but show that in the other direction no subexponential bound holds. We also give a bound on the value of kk for which the cop has a winning strategy on any (possibly infinite) connected graph of maximum degree Δ\Delta, which is best possible up to a factor of (1o(1))(1-o(1)).Comment: 16 pages, 2 figures. Updated to show that Theorem 2 also applies to infinite graphs. Accepted for publication in Discrete Mathematic

    The large core limit of spiral waves in excitable media: A numerical approach

    Full text link
    We modify the freezing method introduced by Beyn & Thuemmler, 2004, for analyzing rigidly rotating spiral waves in excitable media. The proposed method is designed to stably determine the rotation frequency and the core radius of rotating spirals, as well as the approximate shape of spiral waves in unbounded domains. In particular, we introduce spiral wave boundary conditions based on geometric approximations of spiral wave solutions by Archimedean spirals and by involutes of circles. We further propose a simple implementation of boundary conditions for the case when the inhibitor is non-diffusive, a case which had previously caused spurious oscillations. We then utilize the method to numerically analyze the large core limit. The proposed method allows us to investigate the case close to criticality where spiral waves acquire infinite core radius and zero rotation frequency, before they begin to develop into retracting fingers. We confirm the linear scaling regime of a drift bifurcation for the rotation frequency and the core radius of spiral wave solutions close to criticality. This regime is unattainable with conventional numerical methods.Comment: 32 pages, 17 figures, as accepted by SIAM Journal on Applied Dynamical Systems on 20/03/1

    Morphological filtering on hypergraphs

    Full text link
    The focus of this article is to develop computationally efficient mathematical morphology operators on hypergraphs. To this aim we consider lattice structures on hypergraphs on which we build morphological operators. We develop a pair of dual adjunctions between the vertex set and the hyper edge set of a hypergraph H, by defining a vertex-hyperedge correspondence. This allows us to recover the classical notion of a dilation/erosion of a subset of vertices and to extend it to subhypergraphs of H. Afterward, we propose several new openings, closings, granulometries and alternate sequential filters acting (i) on the subsets of the vertex and hyperedge set of H and (ii) on the subhypergraphs of a hypergraph

    Pulling a polymer out of a potential well and the mechanical unzipping of DNA

    Full text link
    Motivated by the experiments on DNA under torsion, we consider the problem of pulling a polymer out of a potential well by a force applied to one of its ends. If the force is less than a critical value, then the process is activated and has an activation energy proportinal to the length of the chain. Above this critical value, the process is barrierless and will occur spontaneously. We use the Rouse model for the description of the dynamics of the peeling out and study the average behaviour of the chain, by replacing the random noise by its mean. The resultant mean-field equation is a nonlinear diffusion equation and hence rather difficult to analyze. We use physical arguments to convert this in to a moving boundary value problem, which can then be solved exactly. The result is that the time tpot_{po} required to pull out a polymer of NN segments scales like N2N^2. For models other than the Rouse, we argue that tpoN1+νt_{po}\sim N^{1+\nu}Comment: 11 pages, 6 figures. To appear in PhysicalReview

    On continuum modeling of sputter erosion under normal incidence: interplay between nonlocality and nonlinearity

    Full text link
    Under specific experimental circumstances, sputter erosion on semiconductor materials exhibits highly ordered hexagonal dot-like nanostructures. In a recent attempt to theoretically understand this pattern forming process, Facsko et al. [Phys. Rev. B 69, 153412 (2004)] suggested a nonlocal, damped Kuramoto-Sivashinsky equation as a potential candidate for an adequate continuum model of this self-organizing process. In this study we theoretically investigate this proposal by (i) formally deriving such a nonlocal equation as minimal model from balance considerations, (ii) showing that it can be exactly mapped to a local, damped Kuramoto-Sivashinsky equation, and (iii) inspecting the consequences of the resulting non-stationary erosion dynamics.Comment: 7 pages, 2 Postscript figures, accepted by Phys. Rev. B corrected typos, few minor change
    corecore