34,165 research outputs found

    Does environment affect the star formation histories of early-type galaxies?

    Full text link
    Differences in the stellar populations of galaxies can be used to quantify the effect of environment on the star formation history. We target a sample of early-type galaxies from the Sloan Digital Sky Survey in two different environmental regimes: close pairs and a general sample where environment is measured by the mass of their host dark matter halo. We apply a blind source separation technique based on principal component analysis, from which we define two parameters that correlate, respectively, with the average stellar age (eta) and with the presence of recent star formation (zeta) from the spectral energy distribution of the galaxy. We find that environment leaves a second order imprint on the spectra, whereas local properties - such as internal velocity dispersion - obey a much stronger correlation with the stellar age distribution.Comment: 5 pages, 2 figures. Proceedings of JENAM 2010, Symposium 2: "Environment and the formation of galaxies: 30 years later

    Radiation environment for rendezvous and docking with nuclear rockets

    Get PDF
    Radiation environment data for the NERVA engine are provided which may be utilized in estimating radiation exposures associated with various space maneuvers. Spatial distributions of neutron and gamma tissue kerma rates produced during full thrust operation of the engine are presented. Final rendezvous with an orbiting space station would be achieved subsequent to full thrust operation during a period of 10 or more hours duration in which impulse is delivered by the propellant used for removal of decay heat. Consequently, post operation radiation levels are of prime importance in estimating space station exposures. Maps of gamma kerma rates around the engine are provided for decay times of 4 and 24 hours after a representative firing. Typical decay curves illustrating the dependence of post operation kerma rates on decay time and operating history are included. Examples of the kerma distributions around the engine which result from integration over specific exposure periods are shown

    Central Charge and the Andrews-Bailey Construction

    Get PDF
    From the equivalence of the bosonic and fermionic representations of finitized characters in conformal field theory, one can extract mathematical objects known as Bailey pairs. Recently Berkovich, McCoy and Schilling have constructed a `generalized' character formula depending on two parameters \ra and 2˚\r2, using the Bailey pairs of the unitary model M(p−1,p)M(p-1,p). By taking appropriate limits of these parameters, they were able to obtain the characters of model M(p,p+1)M(p,p+1), N=1N=1 model SM(p,p+2)SM(p,p+2), and the unitary N=2N=2 model with central charge c=3(1−2p)c=3(1-{\frac{2}{p}}). In this letter we computed the effective central charge associated with this `generalized' character formula using a saddle point method. The result is a simple expression in dilogarithms which interpolates between the central charges of these unitary models.Comment: Latex2e, requires cite.sty package, 13 pages. Additional footnote, citation and reference

    Probabilistic Mass-Radius Relationship for Sub-Neptune-Sized Planets

    Get PDF
    The Kepler Mission has discovered thousands of planets with radii $<4\ R_\oplus,pavingthewayforthefirststatisticalstudiesofthedynamics,formation,andevolutionofthesesub−Neptunesandsuper−Earths.Planetarymassesareanimportantphysicalpropertyforthesestudies,andyetthevastmajorityofKeplerplanetcandidatesdonothavetheirsmeasured.AkeyconcernisthereforehowtomapthemeasuredradiitomassestimatesinthisEarth−to−NeptunesizerangewheretherearenoSolarSystemanalogs.Previousworkshavederiveddeterministic,one−to−onerelationshipsbetweenradiusandmass.However,iftheseplanetsspanarangeofcompositionsasexpected,thenanintrinsicscatteraboutthisrelationshipmustexistinthepopulation.Herewepresentthefirstprobabilisticmass−radiusrelationship(M−Rrelation)evaluatedwithinaBayesianframework,whichbothquantifiesthisintrinsicdispersionandtheuncertaintiesontheM−Rrelationparameters.Weanalyzehowtheresultsdependontheradiusrangeofthesample,andonhowthemassesweremeasured.AssumingthattheM−Rrelationcanbedescribedasapowerlawwithadispersionthatisconstantandnormallydistributed,wefindthat, paving the way for the first statistical studies of the dynamics, formation, and evolution of these sub-Neptunes and super-Earths. Planetary masses are an important physical property for these studies, and yet the vast majority of Kepler planet candidates do not have theirs measured. A key concern is therefore how to map the measured radii to mass estimates in this Earth-to-Neptune size range where there are no Solar System analogs. Previous works have derived deterministic, one-to-one relationships between radius and mass. However, if these planets span a range of compositions as expected, then an intrinsic scatter about this relationship must exist in the population. Here we present the first probabilistic mass-radius relationship (M-R relation) evaluated within a Bayesian framework, which both quantifies this intrinsic dispersion and the uncertainties on the M-R relation parameters. We analyze how the results depend on the radius range of the sample, and on how the masses were measured. Assuming that the M-R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that M/M_\oplus=2.7(R/R_\oplus)^{1.3},ascatterinmassof, a scatter in mass of 1.9\ M_\oplus,andamassconstrainttophysicallyplausibledensities,isthe"best−fit"probabilisticM−RrelationforthesampleofRV−measuredtransitingsub−Neptunes(, and a mass constraint to physically plausible densities, is the "best-fit" probabilistic M-R relation for the sample of RV-measured transiting sub-Neptunes (R_{pl}<4\ R_\oplus$). More broadly, this work provides a framework for further analyses of the M-R relation and its probable dependencies on period and stellar properties.Comment: 14 pages, 5 figures, 2 tables. Accepted to the Astrophysical Journal on April 28, 2016. Select posterior samples and code to use them to compute the posterior predictive mass distribution are available at https://github.com/dawolfgang/MRrelatio

    A Feynman-Kac Formula for Anticommuting Brownian Motion

    Get PDF
    Motivated by application to quantum physics, anticommuting analogues of Wiener measure and Brownian motion are constructed. The corresponding Ito integrals are defined and the existence and uniqueness of solutions to a class of stochastic differential equations is established. This machinery is used to provide a Feynman-Kac formula for a class of Hamiltonians. Several specific examples are considered.Comment: 21 page

    Numerical Algorithm for Detecting Ion Diffusion Regions in the Geomagnetic Tail with Applications to MMS Tail Season May 1 -- September 30, 2017

    Full text link
    We present a numerical algorithm aimed at identifying ion diffusion regions (IDRs) in the geomagnetic tail, and test its applicability. We use 5 criteria applied in three stages. (i) Correlated reversals (within 90 s) of Vx and Bz (at least 2 nT about zero; GSM coordinates); (ii) Detection of Hall electric and magnetic field signatures; and (iii) strong (>10 mV/m) electric fields. While no criterion alone is necessary and sufficient, the approach does provide a robust, if conservative, list of IDRs. We use data from the Magnetospheric Multiscale Mission (MMS) spacecraft during a 5-month period (May 1 to September 30, 2017) of near-tail orbits during the declining phase of the solar cycle. We find 148 events satisfying step 1, 37 satisfying steps 1 and 2, and 17 satisfying all three, of which 12 are confirmed as IDRs. All IDRs were within the X-range [-24, -15] RE mainly on the dusk sector and the majority occurred during traversals of a tailward-moving X-line. 11 of 12 IDRs were on the dusk-side despite approximately equal residence time in both the pre- and post-midnight sectors (56.5% dusk vs 43.5% dawn). MMS could identify signatures of 4 quadrants of the Hall B-structure in 3 events and 3 quadrants in 7 of the remaining 12 confirmed IDRs identified. The events we report commonly display Vx reversals greater than 400 km/s in magnitude, normal magnetic field reversals often >10 nT in magnitude, maximum DC |E| which are often well in excess of the threshold for stage 3. Our results are then compared with the set of IDRs identified by visual examination from Cluster in the years 2000-2005.Comment: In Submission at JGR:Space Physic

    Old and New Fields on Super Riemann Surfaces

    Get PDF
    The ``new fields" or ``superconformal functions" on N=1N=1 super Riemann surfaces introduced recently by Rogers and Langer are shown to coincide with the Abelian differentials (plus constants), viewed as a subset of the functions on the associated N=2N=2 super Riemann surface. We confirm that, as originally defined, they do not form a super vector space.Comment: 9 pages, LaTex. Published version: minor changes for clarity, two new reference

    Nonlinear self-adjointness and conservation laws

    Full text link
    The general concept of nonlinear self-adjointness of differential equations is introduced. It includes the linear self-adjointness as a particular case. Moreover, it embraces the strict self-adjointness and quasi self-adjointness introduced earlier by the author. It is shown that the equations possessing the nonlinear self-adjointness can be written equivalently in a strictly self-adjoint form by using appropriate multipliers. All linear equations possess the property of nonlinear self-adjointness, and hence can be rewritten in a nonlinear strictly self-adjoint. For example, the heat equation ut−Δu=0u_t - \Delta u = 0 becomes strictly self-adjoint after multiplying by u−1.u^{-1}. Conservation laws associated with symmetries can be constructed for all differential equations and systems having the property of nonlinear self-adjointness
    • 

    corecore