4,512 research outputs found

    Uniform infinite planar triangulation and related time-reversed critical branching process

    Full text link
    We establish a connection between the uniform infinite planar triangulation and some critical time-reversed branching process. This allows to find a scaling limit for the principal boundary component of a ball of radius R for large R (i.e. for a boundary component separating the ball from infinity). We show also that outside of R-ball a contour exists that has length linear in R.Comment: 27 pages, 5 figures, LaTe

    Towards a Continuous Record of the Sky

    Full text link
    It is currently feasible to start a continuous digital record of the entire sky sensitive to any visual magnitude brighter than 15 each night. Such a record could be created with a modest array of small telescopes, which collectively generate no more than a few Gigabytes of data daily. Alternatively, a few small telescopes could continually re-point to scan and reco rd the entire sky down to any visual magnitude brighter than 15 with a recurrence epoch of at most a few weeks, again always generating less than one Gigabyte of data each night. These estimates derive from CCD ability and budgets typical of university research projects. As a prototype, we have developed and are utilizing an inexpensive single-telescope system that obtains optical data from about 1500 square degrees. We discuss the general case of creating and storing data from a both an epochal survey, where a small number of telescopes continually scan the sky, and a continuous survey, composed of a constellation of telescopes dedicated each continually inspect a designated section of the sky. We compute specific limitations of canonical surveys in visible light, and estimate that all-sky continuous visual light surveys could be sensitive to magnitude 20 in a single night by about 2010. Possible scientific returns of continuous and epochal sky surveys include continued monitoring of most known variable stars, establishing case histories for variables of future interest, uncovering new forms of stellar variability, discovering the brightest cases of microlensing, discovering new novae and supernovae, discovering new counterparts to gamma-ray bursts, monitoring known Solar System objects, discovering new Solar System objects, and discovering objects that might strike the Earth.Comment: 38 pages, 9 postscript figures, 2 gif images. Revised and new section added. Accepted to PASP. Source code submitted to ASCL.ne

    Spectroscopy and Dynamics of the Predissociated, Quasi-linear S2 State of Chlorocarbene

    Get PDF
    In this work, we report on the spectroscopy and dynamics of the quasi-linear S2 state of chlorocarbene, CHCl, and its deuterated isotopologue using optical-optical double resonance (OODR) spectroscopy through selected rovibronic levels of the S1 state. This study, which represents the first observation of the S2 state in CHCl, builds upon our recent examination of the corresponding state in CHF, where pronounced mode specificity was observed in the dynamics, with predissociation rates larger for levels containing bending excitation. In the present work, a total of 14 S2 state vibrational levels with angular momentum â„“ = 1 were observed for CHCl, and 34 levels for CDCl. The range of â„“ in this case was restricted by the pronounced Renner-Teller effect in the low-lying S1 levels, which severely reduces the fluorescence lifetime for levels with Ka \u3e 0. Nonetheless, by exploiting different intermediate S1 levels, we observed progressions involving all three fundamental vibrations. For levels with long predissociation lifetimes, rotational constants were determined by measuring spectra through different intermediate J levels of the S1 state. Plots of the predissociation linewidth (lifetime) vs. energy for various S2 levels show an abrupt onset, which lies near the calculated threshold for elimination to form C(3P) + HCl on the triplet surface. Our experimental results are compared with a series of high level ab initio calculations, which included the use of a dynamically weighted full-valence CASSCF procedure, focusing maximum weight on the state of interest (the singlet and triplet states were computed separately). This was used as the reference for subsequent Davidson-corrected MRCI(+Q) calculations. These calculations reveal the presence of multiple conical intersections in the singlet manifold

    Scaling functions from q-deformed Virasoro characters

    Get PDF
    We propose a renormalization group scaling function which is constructed from q-deformed fermionic versions of Virasoro characters. By comparison with alternative methods, which take their starting point in the massive theories, we demonstrate that these new functions contain qualitatively the same information. We show that these functions allow for RG-flows not only amongst members of a particular series of conformal field theories, but also between different series such as N=0,1,2 supersymmetric conformal field theories. We provide a detailed analysis of how Weyl characters may be utilized in order to solve various recurrence relations emerging at the fixed points of these flows. The q-deformed Virasoro characters allow furthermore for the construction of particle spectra, which involve unstable pseudo-particles.Comment: 31 pages of Latex, 5 figure

    The Discovery of Cepheids and a New Distance to NGC 2841 Using the Hubble Space Telescope

    Get PDF
    We report on the discovery of Cepheids in the spiral galaxy NGC 2841, based on observations made with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope. NGC 2841 was observed over 12 epochs using the F555W filter, and over 5 epochs using the F814W filter. Photometry was performed using the DAOPHOT/ALLFRAME package. We discovered a total of 29 variables, including 18 high-quality Cepheids with periods ranging from 15 to 40 days. Period-luminosity relations in the V and I bands, based on the high-quality Cepheids, yield an extinction-corrected distance modulus of 30.74 +/- 0.23 mag, which corresponds to a distance of 14.1 +/- 1.5 Mpc. Our distance is based on an assumed LMC distance modulus of 18.50 +/- 0.10 mag (D = 50+/- 2.5 kpc) and a metallicity dependence of the Cepheid P-L relation of gamma (VI) = -0.2 +/- 0.2 mag/dex.Comment: 31 preprint pages including 10 figures. Accepted for publication in ApJ. High-resolution version available from http://cfa-www.harvard.edu/~lmacri/n2841.p

    Distinguishing cancerous from non-cancerous cells through analysis of electrical noise

    Full text link
    Since 1984, electric cell-substrate impedance sensing (ECIS) has been used to monitor cell behavior in tissue culture and has proven sensitive to cell morphological changes and cell motility. We have taken ECIS measurements on several cultures of non-cancerous (HOSE) and cancerous (SKOV) human ovarian surface epithelial cells. By analyzing the noise in real and imaginary electrical impedance, we demonstrate that it is possible to distinguish the two cell types purely from signatures of their electrical noise. Our measures include power-spectral exponents, Hurst and detrended fluctuation analysis, and estimates of correlation time; principal-component analysis combines all the measures. The noise from both cancerous and non-cancerous cultures shows correlations on many time scales, but these correlations are stronger for the non-cancerous cells.Comment: 8 pages, 4 figures; submitted to PR

    Evanescence in Coined Quantum Walks

    Full text link
    In this paper we complete the analysis begun by two of the authors in a previous work on the discrete quantum walk on the line [J. Phys. A 36:8775-8795 (2003) quant-ph/0303105 ]. We obtain uniformly convergent asymptotics for the "exponential decay'' regions at the leading edges of the main peaks in the Schr{\"o}dinger (or wave-mechanics) picture. This calculation required us to generalise the method of stationary phase and we describe this extension in some detail, including self-contained proofs of all the technical lemmas required. We also rigorously establish the exact Feynman equivalence between the path-integral and wave-mechanics representations for this system using some techniques from the theory of special functions. Taken together with the previous work, we can now prove every theorem by both routes.Comment: 32 pages AMS LaTeX, 5 figures in .eps format. Rewritten in response to referee comments, including some additional references. v3: typos fixed in equations (131), (133) and (134). v5: published versio

    Canton Connections: A University-Community Partnership for Post-Disaster Revitalization

    Get PDF
    Back-to-back hurricanes prompted the creation of a partnership between Western Carolina University and an affected community in western North Carolina. The partnership was designed to promote the economic, social, and cultural revitalization of the community while creating opportunities for civic engagement and enriched student learning. The principal stakeholders in the partnership were the university and the municipal government, representing the community at large. The partners undertook several projects over a three-year period as part of a comprehensive, multifaceted initiative. In this article, the authors discuss the benefits and impact of the projects on participants and the community. They also share the insights gained and lessons learned from the initiative and comment briefly on factors inherent in effective university-community partnerships

    Three routes to the exact asymptotics for the one-dimensional quantum walk

    Full text link
    We demonstrate an alternative method for calculating the asymptotic behaviour of the discrete one-coin quantum walk on the infinite line, via the Jacobi polynomials that arise in the path integral representation. This is significantly easier to use than the Darboux method. It also provides a single integral representation for the wavefunction that works over the full range of positions, n,n, including throughout the transitional range where the behaviour changes from oscillatory to exponential. Previous analyses of this system have run into difficulties in the transitional range, because the approximations on which they were based break down here. The fact that there are two different kinds of approach to this problem (Path Integral vs. Schr\"{o}dinger wave mechanics) is ultimately a manifestation of the equivalence between the path-integral formulation of quantum mechanics and the original formulation developed in the 1920s. We discuss how and why our approach is related to the two methods that have already been used to analyse these systems.Comment: 25 pages, AMS preprint format, 4 figures as encapsulated postscript. Replaced because there were sign errors in equations (80) & (85) and Lemma 2 of the journal version (v3
    • …
    corecore