9,227 research outputs found
Discovery of Pulsed X-ray Emission from the SMC Transient RX J0117.6-7330
We report on the detection of pulsed, broad-band, X-ray emission from the
transient source RX J0117.6-7330. The pulse period of 22 seconds is detected by
the ROSAT/PSPC instrument in a 1992 Sep 30 - Oct 2 observation and by the
CGRO/BATSE instrument during the same epoch. Hard X-ray pulsations are
detectable by BATSE for approximately 100 days surrounding the ROSAT
observation (1992 Aug 28 - Dec 8). The total directly measured X-ray luminosity
during the ROSAT observation is 1.0E38 (d/60 kpc)^2 ergs s-1. The pulse
frequency increases rapidly during the outburst, with a peak spin-up rate of
1.2E-10 Hz s-1 and a total frequency change 1.8%. The pulsed percentage is
11.3% from 0.1-2.5 keV, increasing to at least 78% in the 20-70 keV band. These
results establish RX J0117.6-7330 as a transient Be binary system.Comment: 17 pages, Latex, aasms, accepted for publication in ApJ Letter
Soliton crystals in Kerr resonators
Strongly interacting solitons confined to an optical resonator would offer
unique capabilities for experiments in communication, computation, and sensing
with light. Here we report on the discovery of soliton crystals in monolithic
Kerr microresonators-spontaneously and collectively ordered ensembles of
co-propagating solitons whose interactions discretize their allowed temporal
separations. We unambiguously identify and characterize soliton crystals
through analysis of their 'fingerprint' optical spectra, which arise from
spectral interference between the solitons. We identify a rich space of soliton
crystals exhibiting crystallographic defects, and time-domain measurements
directly confirm our inference of their crystal structure. The crystallization
we observe is explained by long-range soliton interactions mediated by
resonator mode degeneracies, and we probe the qualitative difference between
soliton crystals and a soliton liquid that forms in the absence of these
interactions. Our work explores the rich physics of monolithic Kerr resonators
in a new regime of dense soliton occupation and offers a way to greatly
increase the efficiency of Kerr combs; further, the extreme degeneracy of the
configuration space of soliton crystals suggests an implementation for a robust
on-chip optical buffer
Growth adaptation to temperature in N. crassa wild-type strains
Growth adaptation to temperature in N. crassa wild-type strain
Treatment compliance and effectiveness of a cognitive behavioural intervention for low back pain : a complier average causal effect approach to the BeST data set
Background:
Group cognitive behavioural intervention (CBI) is effective in reducing low-back pain and disability in comparison to advice in primary care. The aim of this analysis was to investigate the impact of compliance on estimates of treatment effect and to identify factors associated with compliance.
Methods:
In this multicentre trial, 701 adults with troublesome sub-acute or chronic low-back pain were recruited from 56 general practices. Participants were randomised to advice (control n = 233) or advice plus CBI (n = 468). Compliance was specified a priori as attending a minimum of three group sessions and the individual assessment. We estimated the complier average causal effect (CACE) of treatment.
Results:
Comparison of the CACE estimate of the mean treatment difference to the intention-to-treat (ITT) estimate at 12 months showed a greater benefit of CBI amongst participants compliant with treatment on the Roland Morris Questionnaire (CACE: 1.6 points, 95% CI 0.51 to 2.74; ITT: 1.3 points, 95% CI 0.55 to 2.07), the Modified Von Korff disability score (CACE: 12.1 points, 95% CI 6.07 to 18.17; ITT: 8.6 points, 95% CI 4.58 to 12.64) and the Modified von Korff pain score (CACE: 10.4 points, 95% CI 4.64 to 16.10; ITT: 7.0 points, 95% CI 3.26 to 10.74). People who were non-compliant were younger and had higher pain scores at randomisation.
Conclusions:
Treatment compliance is important in the effectiveness of group CBI. Younger people and those with more pain are at greater risk of non-compliance
X-ray Pulsars in the Small Magellanic Cloud
XMM-Newton archival data for the Small Magellanic Cloud have been examined
for the presence of previously undetected X-ray pulsars. One such pulsar, with
a period of 202 s, is detected. Its position is consistent with an early B star
in the SMC and we identify it as a high mass X-ray binary (HMXB). In the course
of this study we determined the pulse period of the possible AXP CXOU
J010043.1-721134 to be 8.0 s, correcting an earlier report (Lamb et al 2002b)
of a 5.4 s period for this object. Pulse profiles and spectra for each of these
objects are presented as well as for a recently discovered (Haberl & Pietsch
2004) 263 s X-ray pulsar. Properties of an ensemble of 24 optically identified
HMXB pulsars from the SMC are investigated. The locations of the pulsars and an
additional 22 X-ray pulsars not yet identified as having high mass companions
are located predominately in the young (ages years) star
forming regions of the SMC as expected on the basis of binary evolution models.
We find no significant difference between the distribution of spin periods for
the HMXB pulsars of the SMC compared with that of the Milky Way. For those HMXB
pulsars which have Be companions we note an inverse correlation between spin
period and maximum X-ray flux density. (This anti-correlation has been
previously noted for all X-ray binary pulsars by Stella, White & Rosner 1986).
The anti-correlation for the Be binaries may be a reflection of the fact that
the spin periods and orbital periods of Be HMXBs are correlated. We note a
similar correlation between X-ray luminosity and spin period for the Be HMXB
pulsars of the Milky Way and speculate that exploitation of the correlation
could serve as a distance indicator.Comment: final version accepted in The Astrophysical Journa
- …