26 research outputs found

    Radioactive contamination of SrI2(Eu) crystal scintillator

    Get PDF
    A strontium iodide crystal doped by europium (SrI2(Eu)) was produced by using the Stockbarger growth technique. The crystal was subjected to a characterization that includes relative photoelectron output and energy resolution for gamma quanta. The intrinsic radioactivity of the SrI2(Eu) crystal scintillator was tested both by using it as scintillator at sea level and by ultra-low background HPGe gamma spectrometry deep underground. The response of the SrI2(Eu) detector to alpha particles (alpha/beta ratio and pulse shape) was estimated by analysing the 226Ra internal trace contamination of the crystal. We have measured: alpha/beta=0.55 at E_alpha=7.7 MeV, and no difference in the time decay of the scintillation pulses induced by alpha particles and gamma quanta. The application of the obtained results in the search for the double electron capture and electron capture with positron emission in 84Sr has been investigated at a level of sensitivity: T_1/2 \sim 10^{15}-10^{16} yr. The results of these studies demonstrate the potentiality of this material for a variety of scintillation applications, including low-level counting experiments.Comment: 24 pages, 12 figures, 4 tables, accepted for publication on Nucl. Instrum. Meth.

    Solder joint failures under thermo-mechanical loading conditions – a review

    Get PDF
    Solder joints play a critical role in electronic devices by providing electrical, mechanical and thermal interconnections. These miniature joints are also the weakest links in an electronic device. Under severe thermal and mechanical loadings, solder joints could fail in ‘tensile fracture’ due to stress overloading, ‘fatigue failure’ because of the application of cyclical stress and ‘creep failure’ due to a permanent long-term load. This paper reviews the literature on solder joint failures under thermo-mechanical loading conditions, with a particular emphasis on fatigue and creep failures. Literature reviews mainly focused on commonly used lead-free Sn-Ag-Cu (SAC) solders. Based on the literature in experimental and simulation studies on solder joints, it was found that fatigue failures are widely induced by accelerated thermal cycling (ATC). During ATC, the mismatch in coefficients of thermal expansion (CTE) between different elements of electronics assembly contributes significantly to induce thermal stresses on solder joints. The fatigue life of solder joints is predicted based on phenomenological fatigue models that utilise materials properties as inputs. A comparative study of 14 different fatigue life prediction models is presented with their relative advantages, scope and limitations. Creep failures in solder joints, on the other hand, are commonly induced through isothermal ageing. A critical review of various creep models is presented. Many of these strain rate-based creep models are routed to a very well-known Anand Model of inelastic strain rate. Finally, the paper outlined the combined effect of creep and fatigue on solder joint failure.N/

    A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer

    Get PDF
    A new approach has been investigated for the miniaturization and simplification of intraoperative gamma and beta probes that have recently found application in radioguided surgery and sentinel lymph node biopsy. The probe design that is based on dual annular scintillators coupled to specially designed silicon concentric dual photodiode (CDPD). This approach allows us to avoid fiber optics coupling and PMTs. Two channels readout front-end electronics including shaper amplifier attached directly to the back of the detector module has been proposed. Two geometries of Si dual photodiodes coupled to CsI(Tl) annular scintillators with light masking between them were fabricated and investigated. CDPDs have size 10 and 6 mm as well as 6 and 3 mm outer and inner diameters respectively. The spectroscopy properties of CDPD separately and coupled to CsI(Tl) dual scintillator were investigated on I-125, Co- 57 and Na-22 photon sources. Both detectors have demonstrated acceptable energy resolution (10% for 511-keV) for the proposed application with FDG isotopes. In the smaller detector the amplitude of the 511 keV photopeak from outer detector was less than in inner and is related to the light collection in the current geometry. When used in coincidence mode operation we observe a significant reduction in the measured Compton continuum level relative to the photopeak which is not significantly attenuated. The spatial resolution of detector module measured in the horizontal plane was 2-mm FWHM using a 0.5-mm collimated Tc-99m source
    corecore