44 research outputs found

    Inventory and review of the Mio–Pleistocene São Jorge flora (Madeira Island, Portugal): palaeoecological and biogeographical implications

    Get PDF
    The occurrence of plant fossils on Madeira Island has been known since the mid-nineteenth century. Charles Lyell and George Hartung discovered a leaf bed rich in Lauraceae and fern fossils at S~ao Jorge in 1854. The determinations were controversial but a full review was never performed. Here we propose possible geological settings for the fossiliferous outcrop, and present an inventory and a systematic review of the surviving specimens of the S~ao Jorge macroflora. The S~ao Jorge leaf bed no longer outcrops due to a landslide in 1865. It was possible to establish the two alternative volcano stratigraphical settings in the sedimentary intercalations from the Middle Volcanic Complex, ranging in age from 7 to 1.8 Ma. The descriptions of Heer (1857), Bunbury (1859) and Hartung & Mayer (1864) are reviewed based on 82 surviving specimens. From the initial 37 taxa, we recognize only 20: Osmunda sp., Pteridium aquilinum, Asplenium cf. onopteris, aff. Asplenium, cf. Polystichum, cf. Davallia, Woodwardia radicans, Filicopsida gen. et sp. indet. 1 and 2, Ocotea foetens, Salix sp., Erica arborea, cf. Vaccinium, Rubus sp, cf. Myrtus, Magnoliopsida gen. et sp. indet. 1 to 3, Liliopsida gen. et sp. indet. 1. Magnoliopsida gen. et sp. indet. 4 is based on one previously undescribed flower or fruit. The floristic composition of the S~ao Jorge fossils resembles the current floristic association of temperate stink laurel (Ocotea foetens) forest, suggesting a warm and humid palaeoclimate and indicating that laurel forests were present in Macaronesia at least since the Gelasian, a time when the palaeotropical geofloral elements were almost extinct in Europe.info:eu-repo/semantics/publishedVersio

    A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales

    Full text link
    The Caryophyllales constitute a major lineage of flowering plants with approximately 12500 species in 39 families. A taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. A detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. The process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new families (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. As a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the Families and genera of vascular plants” series. A checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. Notes indicate how extensively the respective genera have been studied in a phylogenetic context. The most diverse families at the generic level are Cactaceae and Aizoaceae, but 28 families comprise only one to six genera. This synopsis represents a first step towards the aim of creating a global synthesis of the species diversity in the angiosperm order Caryophyllales integrating the work of numerous specialists around the world

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    А NOTE ON THE GENUS PSEUDODRIMYS (WINTERACEAE)

    No full text
    New data on the morphology and anatomy of the fruits and seeds argues for exclusion of the aberrant (incertae sedis) species Tasmannia purpurascens (Vickery) A.C. Sm. (=Drimys purpurascens Vickery) from the genus Tasmannia R. Br. ex DC. (Winteraceae Lindl.). The species is transferred into the genus Pseudodrimys Doweld

    The systematic relevance of fruit and seed structure in Bersama and Melianthus (Melianthaceae)

    No full text

    Validation of some suprageneric names in Podocarpopsida

    No full text
    Volume: 11Start Page: 395End Page: 39

    Eocooksonia

    No full text
    corecore