2,389 research outputs found

    Moxalactam Therapy for Obstetric and Gynecologic Infections

    Get PDF
    Moxalactam, a new cephalosporin antibiotic with a broad spectrum of activity, was evaluated for safety and therapeutic efficacy in the treatment of genital tract infections in women. Fifty-three patients with postpartum endometritis or acute or chronic pelvic inflammatory disease were treated with 2 g of moxalactam iv every 8 hr, usually for five days or longer. Appropriate cultures of peripheral blood, endometrium, cul-de-sac aspirates, urine, wound, and endocervix (only for Neisseria gonorrhoeae) were performed. Overall, 90.6% (48 of 53) of the patients were successfully treated with moxalactam - 86.2% (25 of 29) and 95.8% (23 of 24) of the patients with endometritis and pelvic inflammatory disease, respectively. Therapy failed in one of five bacteremic patients with endometritis. Of all the bacteria isolated from appropriate culture sites, 58% (224 of 383) were anaerobes, with anaerobic gram-negative rods - particularly Bacteroides bivius-and gram-positive cocci being predominant. Of 206 anaerobic strains tested with moxalactam by agar dilution techniques, 82% (169 of 206) were susceptible (minimal inhibitory concentration [MIC], â©˝8 ÎĽg/ml), 11.6% (24 of 206) were moderately susceptible (MIC, 16-32 ÎĽg/ml), and 6.3% (13 of 206) were resistant (MIC, â©ľ64 ÎĽg/ml). Among the aerobic isolates, enterococci were uniformly resistant. Thus, moxalactam performed well as a single agent in this open clinical trail for women with infections of the genital trac

    Coarse-graining diblock copolymer solutions: a macromolecular version of the Widom-Rowlinson model

    Full text link
    We propose a systematic coarse-grained representation of block copolymers, whereby each block is reduced to a single ``soft blob'' and effective intra- as well as intermolecular interactions act between centres of mass of the blocks. The coarse-graining approach is applied to simple athermal lattice models of symmetric AB diblock copolymers, in particular to a Widom-Rowlinson-like model where blocks of the same species behave as ideal polymers (i.e. freely interpenetrate), while blocks of opposite species are mutually avoiding walks. This incompatibility drives microphase separation for copolymer solutions in the semi-dilute regime. An appropriate, consistent inversion procedure is used to extract effective inter- and intramolecular potentials from Monte Carlo results for the pair distribution functions of the block centres of mass in the infinite dilution limit.Comment: To be published in mol.phys(2005

    The Band Excitation Method in Scanning Probe Microscopy for Rapid Mapping of Energy Dissipation on the Nanoscale

    Full text link
    Mapping energy transformation pathways and dissipation on the nanoscale and understanding the role of local structure on dissipative behavior is a challenge for imaging in areas ranging from electronics and information technologies to efficient energy production. Here we develop a novel Scanning Probe Microscopy (SPM) technique in which the cantilever is excited and the response is recorded over a band of frequencies simultaneously rather than at a single frequency as in conventional SPMs. This band excitation (BE) SPM allows very rapid acquisition of the full frequency response at each point (i.e. transfer function) in an image and in particular enables the direct measurement of energy dissipation through the determination of the Q-factor of the cantilever-sample system. The BE method is demonstrated for force-distance and voltage spectroscopies and for magnetic dissipation imaging with sensitivity close to the thermomechanical limit. The applicability of BE for various SPMs is analyzed, and the method is expected to be universally applicable to all ambient and liquid SPMs.Comment: 32 pages, 9 figures, accepted for publication in Nanotechnolog

    Risk Prediction Scores for Postoperative Mortality After Esophagectomy: Validation of Different Models

    Get PDF
    Background: Different prediction models for operative mortality after esophagectomy have been developed. The aim of this study is to independently validate prediction models from Philadelphia, Rotterdam, Munich, and the ASA. Methods: The scores were validated using logistic regression models in two cohorts of patients undergoing esophagectomy for cancer from Switzerland (n = 170) and Australia (n = 176). Results: All scores except ASA were significantly higher in the Australian cohort. There was no significant difference in 30-day mortality or in-hospital death between groups. The Philadelphia and Rotterdam scores had a significant predictive value for 30-day mortality (p = 0.001) and in-hospital death (p = 0.003) in the pooled cohort, but only the Philadelphia score had a significant prediction value for 30-day mortality in both cohorts. Neither score showed any predictive value for in-hospital death in Australians but were highly significant in the Swiss cohort. ASA showed only a significant predictive value for 30-day mortality in the Swiss. For in-hospital death, ASA was a significant predictor in the pooled and Swiss cohorts. The Munich score did not have any significant predictive value whatsoever. Conclusion: None of the scores can be applied generally. A better overall predictive score or specific prediction scores for each country should be develope

    Surgeon\u27s guide to anticoagulant and antiplatelet medications part two: antiplatelet agents and perioperative management of long-term anticoagulation.

    Get PDF
    An increasing number of potent antiplatelet and anticoagulant medications are being used for the long-term management of cardiac, cerebrovascular, and peripheral vascular conditions. Management of these medications in the perioperative and peri-injury settings can be challenging for surgeons, mandating an understanding of these agents and the risks and benefits of various management strategies. In this two part review, agents commonly encountered by surgeons in the perioperative and peri-injury settings are discussed and management strategies for patients on long-term antiplatelet and anticoagulant therapy reviewed. In part one, we review warfarin and the new direct oral anticoagulants. In part two, we review antiplatelet agents and assessment of platelet function and the perioperative management of long-term anticoagulation and antiplatelet therapy

    Is there still a role for the lung injury score in the era of the Berlin definition ARDS?

    Get PDF
    BACKGROUND: The Lung Injury Score (LIS) remains a commonly utilized measure of lung injury severity though the additive value of LIS to predict ARDS outcomes over the recent Berlin definition of ARDS, which incorporates severity, is not known. METHODS: We tested the association of LIS (in which scores range from 0 to 4, with higher scores indicating more severe lung injury) and its four components calculated on the day of ARDS diagnosis with ARDS morbidity and mortality in a large, multi-ICU cohort of patients with Berlin-defined ARDS. Receiver Operator Characteristic (ROC) curves were generated to compare the predictive validity of LIS for mortality to Berlin stages of severity (mild, moderate and severe). RESULTS: In 550 ARDS patients, a one-point increase in LIS was associated with 58% increased odds of in-hospital death (95% CI 14 to 219%, P = 0.006), a 7% reduction in ventilator-free days (95% CI 2 to 13%, P = 0.01), and, among patients surviving hospitalization, a 25% increase in days of mechanical ventilation (95% CI 9 to 43%, P = 0.001) and a 16% increase (95% CI 2 to 31%, P = 0.02) in the number of ICU days. However, the mean LIS was only 0.2 points higher (95% CI 0.1 to 0.3) among those who died compared to those who lived. Berlin stages of severity were highly correlated with LIS (Spearman’s rho 0.72, P < 0.0001) and were also significantly associated with ARDS mortality and similar morbidity measures. The predictive validity of LIS for mortality was similar to Berlin stages of severity with an area under the curve of 0.58 compared to 0.60, respectively (P-value 0.49). CONCLUSIONS: In a large, multi-ICU cohort of patients with ARDS, both LIS and the Berlin definition severity stages were associated with increased in-hospital morbidity and mortality. However, predictive validity of both scores was marginal, and there was no additive value of LIS over Berlin. Although neither LIS nor the Berlin definition were designed to prognosticate outcomes, these findings suggest that the role of LIS in characterizing lung injury severity in the era of the Berlin definition ARDS may be limited

    HATS-3b: An inflated hot Jupiter transiting an F-type star

    Full text link
    We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V=12.4 F-dwarf star. HATS-3b has a period of P = 3.5479d, mass of Mp = 1.07MJ, and radius of Rp = 1.38RJ. Given the radius of the planet, the brightness of the host star, and the stellar rotational velocity (vsini = 9.0km/s), this system will make an interesting target for future observations to measure the Rossiter-McLaughlin effect and determine its spin-orbit alignment. We detail the low/medium-resolution reconnaissance spectroscopy that we are now using to deal with large numbers of transiting planet candidates produced by the HATSouth survey. We show that this important step in discovering planets produces logg and Teff parameters at a precision suitable for efficient candidate vetting, as well as efficiently identifying stellar mass eclipsing binaries with radial velocity semi-amplitudes as low as 1 km/s.Comment: 11 pages, 10 figures, submitted to A

    HATS-13b and HATS-14b: two transiting hot Jupiters from the HATSouth survey

    Get PDF
    We report the discovery of HATS-13b and HATS-14b, two hot-Jupiter transiting planets discovered by the HATSouth survey. The host stars are quite similar to each other (HATS-13: V = 13.9 mag, M* = 0.96 Msun, R* = 0.89 Rsun, Teff = 5500 K, [Fe/H] = 0.05; HATS-14: V = 13.8 mag, M* = 0.97 Msun, R* = 0.93 Rsun, Teff = 5350 K, [Fe/H] = 0.33) and both the planets orbit around them with a period of roughly 3 days and a separation of roughly 0.04 au. However, even though they are irradiated in a similar way, the physical characteristics of the two planets are very different. HATS-13b, with a mass of Mp = 0.543 MJ and a radius of Rp = 1.212 RJ, appears as an inflated planet, while HATS-14b, having a mass of Mp = 1.071 MJ and a radius of Rp = 1.039 RJ, is only slightly larger in radius than Jupiter.Comment: 13 pages, 7 figures, Submitted to Astronomy & Astrophysics. arXiv admin note: text overlap with arXiv:1503.0006

    An Axial Time-of-flight Mass Spectrometer for Upper Atmospheric Measurements

    Get PDF
    As the “shoreline” of the Earth’s atmosphere, the mesosphere/lower thermosphere (MLT) region is home to many interesting and important phenomena, the most visible of which are the auroras. Geomagnetic storms, in addition to causing very intense auroral activity, also deposit large amounts of energy into the earth’s ionosphere. Recent analysis of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument aboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite suggests that 5.3μm emission from vibrationally excited NO is the main method of energy dissipation from energy deposited by geomagnetic storms. Additionally, NO+ has been shown to be the major contributor to geomagnetic storm induced 4.3μm nighttime emission. In order to better physically understand these two large sources of geomagnetic storm energy dissipation, a sounding rocket mission, ROCKet-borne Storm Energetics of Auroral Dosing in the E-region (ROCK-STEADE) is being proposed. The ROCK-STEADE instrument suite consists of several photometers, an interferometer, an IR spectrometer, and two time-of-flight mass spectrometers (TOFMS). The TOFMS will measure the ion and neutral compositions in the atmosphere as the sounding rocket travels through the MLT. Due to the use of microchannel plate (MCP) detectors in TOFMS, one of the major challenges to making measurements in the MLT is the high ambient pressure. Other challenges and sources of error and background include stray UV photons, scattering of gas molecules from the interior surfaces of the instrument, dissociation of molecules in the bow shock caused by the supersonic rocket flight, and reactive recombination at the surfaces of the instrument. Methods of dealing with these challenges include: • Recent advances in MCP technology allowing MCP operation into the mtorr range • Cooling the front surface of the TOFMS using liquid He to eliminate the bow shock (thus making possible the direct sampling of the ambient atmosphere) • Cryogenically cooling the interior of the instrument to eliminate scattering of gas from instrument walls and therefore also reducing the contribution of reactive recombination • Rigorous error analysis to account for the background contribution of stray U
    • …
    corecore