6 research outputs found

    Hennessy-Milner Logic with Greatest Fixed Points as a Complete Behavioural Specification Theory

    Get PDF
    There are two fundamentally different approaches to specifying and verifying properties of systems. The logical approach makes use of specifications given as formulae of temporal or modal logics and relies on efficient model checking algorithms; the behavioural approach exploits various equivalence or refinement checking methods, provided the specifications are given in the same formalism as implementations. In this paper we provide translations between the logical formalism of Hennessy-Milner logic with greatest fixed points and the behavioural formalism of disjunctive modal transition systems. We also introduce a new operation of quotient for the above equivalent formalisms, which is adjoint to structural composition and allows synthesis of missing specifications from partial implementations. This is a substantial generalisation of the quotient for deterministic modal transition systems defined in earlier papers

    On Refinements of Boolean and Parametric Modal Transition Systems

    Full text link
    We consider the extensions of modal transition systems (MTS), namely Boolean MTS and parametric MTS and we investigate the refinement problems over both classes. Firstly, we reduce the problem of modal refinement over both classes to a problem solvable by a QBF solver and provide experimental results showing our technique scales well. Secondly, we extend the algorithm for thorough refinement of MTS providing better complexity then via reductions to previously studied problems. Finally, we investigate the relationship between modal and thorough refinement on the two classes and show how the thorough refinement can be approximated by the modal refinement

    Verification of embedded systems using synchronous observers

    No full text
    corecore