1,808 research outputs found

    A conceptual framework for transportation research at Mississippi Test Facility of NASA

    Get PDF
    Constructing models of transportation system in U

    Is cosmic acceleration slowing down?

    Full text link
    We investigate the course of cosmic expansion in its `recent past' using the Constitution SN Ia sample (which includes CfA data at low redshifts), jointly with signatures of baryon acoustic oscillations (BAO) in the galaxy distribution and fluctuations in the cosmic microwave background (CMB). Earlier SN Ia data sets could not address this issue because of a paucity of data at low redshifts. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q_0=0) fits the data about as well as LCDM. This effect, which is most clearly seen using the recently introduced `Om' diagnostic, corresponds to an increase of Om(z) and q(z) at redshifts z \lleq 0.3. In geometrical terms, this suggests that cosmic acceleration may have already peaked and that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analysed in combination with BAO+CMB using the same statistical methods. The effect we observe could correspond to DE decaying into dark matter (or something else). A toy model which mimics this process agrees well with the combined SN Ia+BAO+CMB data.Comment: 6 pages, 5 figures, presentation expanded, results for a new subsample of the Constitution set are added, new BAO data are accounted for, main results unchange

    Two new diagnostics of dark energy

    Full text link
    We introduce two new diagnostics of dark energy (DE). The first, Om, is a combination of the Hubble parameter and the cosmological redshift and provides a "null test" of dark energy being a cosmological constant. Namely, if the value of Om(z) is the same at different redshifts, then DE is exactly cosmological constant. The slope of Om(z) can differentiate between different models of dark energy even if the value of the matter density is not accurately known. For DE with an unevolving equation of state, a positive slope of Om(z) is suggestive of Phantom (w < -1) while a negative slope indicates Quintessence (w > -1). The second diagnostic, "acceleration probe"(q-probe), is the mean value of the deceleration parameter over a small redshift range. It can be used to determine the cosmological redshift at which the universe began to accelerate, again without reference to the current value of the matter density. We apply the "Om" and "q-probe" diagnostics to the Union data set of type Ia supernovae combined with recent data from the cosmic microwave background (WMAP5) and baryon acoustic oscillations.Comment: 14 pages, 9 figures. Some new results and an additional reference. Main conclusions unchanged. Matches published versio

    Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes

    Full text link
    Within the "pseudo-Dirac" scenario for massive neutrinos the existence of sterile neutrinos which are almost degenerate in mass with the active ones is hypothesized. The presence of these sterile neutrinos can affect the flavor composition of cosmic neutrinos arriving at Earth after traveling large distances from astrophysical objects. We examine the prospects of neutrino telescopes such as IceCube to probe the very tiny mass squared differences 10^(-12) eV^2<\Delta m^2<10^(-19) eV^2, by analyzing the ratio of μ\mu-track events to shower-like events. Considering various sources of uncertainties which enter this analysis, we examine the capability of neutrino telescopes to verify the validity of the pseudo-Dirac neutrino scenario and especially to discriminate it from the conventional scenario with no sterile neutrino. We also discuss the robustness of our results with respect to the uncertainties in the initial flavor ratio of neutrinos at the source.Comment: 24 pages, 5 figure
    • …
    corecore