1,000 research outputs found

    Deep perceptual preprocessing for video coding

    Get PDF
    We introduce the concept of rate-aware deep perceptual preprocessing (DPP) for video encoding. DPP makes a single pass over each input frame in order to enhance its visual quality when the video is to be compressed with any codec at any bitrate. The resulting bitstreams can be decoded and displayed at the client side without any post-processing component. DPP comprises a convolutional neural network that is trained via a composite set of loss functions that incorporates: (i) a perceptual loss based on a trained no-reference image quality assessment model, (ii) a reference-based fidelity loss expressing L1 and structural similarity aspects, (iii) a motion-based rate loss via block-based transform, quantization and entropy estimates that converts the essential components of standard hybrid video encoder designs into a trainable framework. Extensive testing using multiple quality metrics and AVC, AV1 and VVC encoders shows that DPP+encoder reduces, on average, the bitrate of the corresponding encoder by 11%. This marks the first time a server-side neural processing component achieves such savings over the state-of-the-art in video coding

    Voronoi-Based Compact Image Descriptors: Efficient Region-of-Interest Retrieval With VLAD and Deep-Learning-Based Descriptors

    Get PDF
    We investigate the problem of image retrieval based on visual queries when the latter comprise arbitrary regionsof- interest (ROI) rather than entire images. Our proposal is a compact image descriptor that combines the state-of-the-art in content-based descriptor extraction with a multi-level, Voronoibased spatial partitioning of each dataset image. The proposed multi-level Voronoi-based encoding uses a spatial hierarchical K-means over interest-point locations, and computes a contentbased descriptor over each cell. In order to reduce the matching complexity with minimal or no sacrifice in retrieval performance: (i) we utilize the tree structure of the spatial hierarchical Kmeans to perform a top-to-bottom pruning for local similarity maxima; (ii) we propose a new image similarity score that combines relevant information from all partition levels into a single measure for similarity; (iii) we combine our proposal with a novel and efficient approach for optimal bit allocation within quantized descriptor representations. By deriving both a Voronoi-based VLAD descriptor (termed as Fast-VVLAD) and a Voronoi-based deep convolutional neural network (CNN) descriptor (termed as Fast-VDCNN), we demonstrate that our Voronoi-based framework is agnostic to the descriptor basis, and can easily be slotted into existing frameworks. Via a range of ROI queries in two standard datasets, it is shown that the Voronoibased descriptors achieve comparable or higher mean Average Precision against conventional grid-based spatial search, while offering more than two-fold reduction in complexity. Finally, beyond ROI queries, we show that Voronoi partitioning improves the geometric invariance of compact CNN descriptors, thereby resulting in competitive performance to the current state-of-theart on whole image retrieval

    Complexity-Scalable Neural Network Based MIMO Detection With Learnable Weight Scaling

    Get PDF
    This paper introduces a framework for systematic complexity scaling of deep neural network (DNN) based MIMO detectors. The model uses a fraction of the DNN inputs by scaling their values through weights that follow monotonically non-increasing functions. This allows for weight scaling across and within the different DNN layers in order to achieve scalable complexity-accuracy results. To reduce complexity further, we introduce a regularization constraint on the layer weights such that, at inference, parts (or the entirety) of network layers can be removed with minimal impact on the detection accuracy. We also introduce trainable weight-scaling functions for increased robustness to changes in the activation patterns and a further improvement in the detection accuracy at the same inference complexity. Numerical results show that our approach is 10 and 100-fold less complex than classical approaches based on semi-definite relaxation and ML detection, respectively

    Prediction-based incremental refinement for binomially-factorized discrete wavelet transforms

    Get PDF
    It was proposed recently that quantized representations of the input source (e. g., images, video) can be used for the computation of the two-dimensional discrete wavelet transform (2D DWT) incrementally. The coarsely quantized input source is used for the initial computation of the forward or inverse DWT, and the result is successively refined with each new refinement of the source description via an embedded quantizer. This computation is based on the direct two-dimensional factorization of the DWT using the generalized spatial combinative lifting algorithm. In this correspondence, we investigate the use of prediction for the computation of the results, i.e., exploiting the correlation of neighboring input samples (or transform coefficients) in order to reduce the dynamic range of the required computations, and thereby reduce the circuit activity required for the arithmetic operations of the forward or inverse transform. We focus on binomial factorizations of DWTs that include (amongst others) the popular 9/7 filter pair. Based on an FPGA arithmetic co-processor testbed, we present energy-consumption results for the arithmetic operations of incremental refinement and prediction-based incremental refinement in comparison to the conventional (nonrefinable) computation. Our tests with combinations of intra and error frames of video sequences show that the former can be 70% more energy efficient than the latter for computing to half precision and remains 15% more efficient for full-precision computation

    Learning-Based Symbol Level Precoding: A Memory-Efficient Unsupervised Learning Approach

    Get PDF
    Symbol level precoding (SLP) has been proven to be an effective means of managing the interference in a multiuser downlink transmission and also enhancing the received signal power. This paper proposes an unsupervised-learning based SLP that applies to quantized deep neural networks (DNNs). Rather than simply training a DNN in a supervised mode, our proposal unfolds a power minimization SLP formulation in an imperfect channel scenario using the interior point method (IPM) proximal 'log' barrier function. We use binary and ternary quantizations to compress the DNN's weight values. The results show significant memory savings for our proposals compared to the existing full-precision SLP-DNet with significant model compression of ~ 21Ă— and ~ 13Ă— for both binary DNN-based SLP (RSLP-BDNet) and ternary DNN-based SLP (RSLP-TDNets), respectively

    An Unsupervised Learning-Based Approach for Symbol-Level-Precoding

    Get PDF
    This paper proposes an unsupervised learning-based precoding framework that trains deep neural networks (DNNs) with no target labels by unfolding an interior point method (IPM) proximal `log' barrier function. The proximal `log' barrier function is derived from the strict power minimization formulation subject to signal-to-interference-plus-noise ratio (SINR) constraint. The proposed scheme exploits the known interference via symbol-level precoding (SLP) to minimize the transmit power and is named strict Symbol-Level-Precoding deep network (SLP-SDNet). The results show that SLP-SDNet outperforms the conventional block-level-precoding (Conventional BLP) scheme while achieving near-optimal performance faster than the SLP optimization-based approac

    A Memory-Efficient Learning Framework for Symbol Level Precoding with Quantized NN Weights

    Get PDF
    This paper proposes a memory-efficient deep neural network (DNN) framework-based symbol level precoding (SLP). We focus on a DNN with realistic finite precision weights and adopt an unsupervised deep learning (DL) based SLP model (SLP-DNet). We apply a stochastic quantization (SQ) technique to obtain its corresponding quantized version called SLP-SQDNet. The proposed scheme offers a scalable performance vs memory trade-off, by quantizing a scalable percentage of the DNN weights, and we explore binary and ternary quantizations. Our results show that while SLP-DNet provides near-optimal performance, its quantized versions through SQ yield ~3.46× and ~2.64× model compression for binary-based and ternary-based SLP-SQDNets, respectively. We also find that our proposals offer ~20× and ~10× computational complexity reductions compared to SLP optimization-based and SLP-DNet, respectively

    Neuromorphic Vision Sensing for CNN-based Action Recognition

    Get PDF
    Neuromorphic vision sensing (NVS) hardware is now gaining traction as a low-power/high-speed visual sensing technology that circumvents the limitations of conventional active pixel sensing (APS) cameras. While object detection and tracking models have been investigated in conjunction with NVS, there is currently little work on NVS for higher-level semantic tasks, such as action recognition. Contrary to recent work that considers homogeneous transfer between flow domains (optical flow to motion vectors), we propose to embed an NVS emulator into a multi-modal transfer learning framework that carries out heterogeneous transfer from optical flow to NVS. The potential of our framework is showcased by the fact that, for the first time, our NVS-based results achieve comparable action recognition performance to motion-vector or optical-flow based methods (i.e., accuracy on UCF-101 within 8.8% of I3D with optical flow), with the NVS emulator and NVS camera hardware offering 3 to 6 orders of magnitude faster frame generation (respectively) compared to standard Brox optical flow. Beyond this significant advantage, our CNN processing is found to have the lowest total GFLOP count against all competing methods (up to 7.7 times complexity saving compared to I3D with optical flow)

    Sequence-Level Reference Frames In Video Coding

    Get PDF
    The proliferation of low-cost DRAM chipsets now begins to allow for the consideration of substantially-increased decoded picture buffers in advanced video coding standards such as HEVC, VVC, and Google VP9. At the same time, the increasing demand for rapid scene changes and multiple scene repetitions in entertainment or broadcast content indicates that extending the frame referencing interval to tens of minutes or even the entire video sequence may offer coding gains, as long as one is able to identify frame similarity in a computationally- and memory-efficient manner. Motivated by these observations, we propose a “stitching” method that defines a reference buffer and a reference frame selection algorithm. Our proposal extends the referencing interval of inter-frame video coding to the entire length of video sequences. Our reference frame selection algorithm uses well-established feature descriptor methods that describe frame structural elements in a compact and semantically-rich manner. We propose to combine such compact descriptors with a similarity scoring mechanism in order to select the frames to be “stitched” to reference picture buffers of advanced inter-frame encoders like HEVC, VVC, and VP9 without breaking standard compliance. Our evaluation on synthetic and real-world video sequences with the HEVC and VVC reference encoders shows that our method offers significant rate gains, with complexity and memory requirements that remain manageable for practical encoders and decoders

    Graph-Based Object Classification for Neuromorphic Vision Sensing

    Get PDF
    Neuromorphic vision sensing (NVS) devices represent visual information as sequences of asynchronous discrete events (a.k.a., "spikes'") in response to changes in scene reflectance. Unlike conventional active pixel sensing (APS), NVS allows for significantly higher event sampling rates at substantially increased energy efficiency and robustness to illumination changes. However, object classification with NVS streams cannot leverage on state-of-the-art convolutional neural networks (CNNs), since NVS does not produce frame representations. To circumvent this mismatch between sensing and processing with CNNs, we propose a compact graph representation for NVS. We couple this with novel residual graph CNN architectures and show that, when trained on spatio-temporal NVS data for object classification, such residual graph CNNs preserve the spatial and temporal coherence of spike events, while requiring less computation and memory. Finally, to address the absence of large real-world NVS datasets for complex recognition tasks, we present and make available a 100k dataset of NVS recordings of the American sign language letters, acquired with an iniLabs DAVIS240c device under real-world conditions
    • …
    corecore