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Abstract—Symbol level precoding (SLP) has been proven
to be an effective means of managing the interference in
a multiuser downlink transmission and also enhancing the
received signal power. This paper proposes an unsupervised-
learning based SLP that applies to quantized deep neural
networks (DNNs). Rather than simply training a DNN
in a supervised mode, our proposal unfolds a power min-
imization SLP formulation in an imperfect channel sce-
nario using the interior point method (IPM) proximal ‘log’
barrier function. We use binary and ternary quantizations
to compress the DNN’s weight values. The results show
significant memory savings for our proposals compared to
the existing full-precision SLP-DNet with significant model
compression of ∼ 21× and ∼ 13× for both binary DNN-based
SLP (RSLP-BDNet) and ternary DNN-based SLP (RSLP-
TDNets), respectively.

I. Introduction
Multiple-input-multiple-output (MIMO) is one of the essen-

tial techniques for fifth-generation (5G) wireless communica-
tion and has recently attracted a myriad of research. Con-
ventional block-level precoding (BLP) methods that exploit
the spatial multiplexing of the multi-user MIMO system, is
employed at the base station (BS) to mitigate the multi-
user interference (MUI) have proven to be computationally
efficient than the optimal dirty paper coding (DPC) but suffer
performance deterioration [1]. The method for classifying in-
stantaneous interference into constructive and destructive was
first investigated in [2]. The suboptimal precoding methods
that exploit constructive interference (CI) were first introduced
in [3].

The optimization-based precoding methods are intriguing
because of their propensity to deliver various performance tar-
gets. The first optimization-based CI precoding was proposed
in the context of vector perturbation strategy in [4]. Additional
performance is achieved by applying the precoding coefficients
on a symbol-by-symbol basis termed symbol level precoding
(SLP) that exploits the multiuser interference via CI with
the known channel state information (CSI) and converts it
into beneficial power at the receiver. Such precoding strategies
have been extensively studied over the last five years. [5]–[8].
More recently, a closed-form optimal precoding design via CI
exploitation in the MISO downlink for optimization with both
strict and relaxed phase rotations was proposed [9]. Running
CI-based precoding methods online on a symbol-by-symbol
basis can be computationally taxing despite the outstanding
performance they offered.

With relatively low inference complexity, deep learning (DL)-
based precoding designs have recently been proposed for MU-
MIMO downlink transmission. [10]–[13]. However, learning-
based strategies for wireless physical layer designs use DL
model as a function approximator in a supervised learning
mode, which requires labeled training data. This labeled train-
ing data is obtained from the analytical solution of the opti-
mization problem, whose accuracy is bounded by the optimiza-
tion algorithm. [14].

The DL model contains millions of trained parameters, which
are often stored in a 32-bit floating-point (FP32) numerical
format. However, this renders the trained DL model computa-
tionally inefficient during inference and challenging to deploy
to the edged devices due to resource limitations (memory and
power constraints). Scalable deep neural network (DNN) mod-
els, whose weights are expressed in lower numerical precision,
have been recently attracted a lot of attention [15]–[17]. While
this idea is not new in computer vision, it has not been ade-
quately explored within the wireless communications domain.
A scalable DDN-based MIMO receiver design, where the in-
significant neurons were systematically attenuated or removed
via monotonically decreasing functions to reduce the network’s
size, was first introduced in the work of [18], [19]. However,
in this work, we propose an unsupervised, low precision DNN-
based SLP framework, where DNN weights are constrained to
binary values based on the initial work on scalable learning-
based SLP designs [20].

II. System Model and Symbol Level Precoding

A. System Model

Consider single cell MU-MISO downlink transmission sce-
nario where K single-antenna users are served by an by M BS
antennas. Assuming a flat-fading Rayleigh channel hi ∈ CNt×1,
the received signal at the i-th user is expressed as

yi = hTi
K∑
k=1

wkdi + ni, (1)

where hi, wi, di and ni represent the channel vector, precoding
vector, data symbol, phase rotation and additive white Gaus-
sian noise for the i-th user.

Instantaneous interference is categorized into constructive
and destructive [21]. As an illustration, Fig. 1(a) shows the
QPSK constellations diagram, where the CI area is indicated by
the green region with respect to the minimum distance (τ) from
the decision boundaries, allowing the interfering signals to be
added constructively with the symbol of interest via precoding
vectors. The generic geometrical representation of the CI in
Fig. 1(b) shows that if the maximum angle shift (φ = 0) in
the CI region is zero, the interfering signals overlap completely
on the symbol of interest. Hence, the problem becomes a strict
phase angle optimization. However, the strict phase formulation
is not appealing because it leads to an additional transmis-
sion power compared to the corresponding relaxed counter-
part [21]. For simplicity, we define the following variables,
ĥi = hi

∑K

k=1 e
j(φk−φi) ∈ CM×1, w =

∑K

k=1 wk ∈ CM×1,
ĥRi = <{ĥi}, ĥIi = ={ĥi}, wR = <{w} and wI = ={w}.
Similarly, we also let Ψ =

[
ĥRi ĥIi

]T , w1 = [wR − wI ]T ,

where Θ =
[
OM −IM
IM OM

]
∈ R2M×2M .
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(a) Constructive interference constellation

CI Optimization region

(b) Generic geometrical optimization regions for interfer-
ence exploitation

Fig. 1: Graphical representation of Interference Exploitation for Precoding design in QPSK [5]

B. Conventional Robust Precoding
In practice, the exact channel state information (CSI) is often

unknown; only the estimate is

ĥi = hi + ei ∀k, (2)

where hi is the known CSI estimates at the BS and ei denotes
the channel error. Given this, the robust traditional recording
for the downlink MU-MISO power minimization optimization
is [22]

min
{W̄i�0, di≥0}

K∑
i=1

trace(W̄i)

s.t.
[
ĥ∗iTiĥTi − γin0 − diδ2

i ĥ∗iTi
TiĥTi Ti + δ2

i I

]
� 0 ∀k

(3)
where Ti

∆= W̄i − Γi
∑K

k=1,k 6=i W̄k ∀k and W̄i = wiw†i .

C. Robust SLP optimization-Based Power Minimization
The multi-cast CI formulation of the power minimization

problem for the worst-case scenario is given by [22]

min
{w}

‖w‖22

s.t.
∣∣∣={ĥTi w}

∣∣∣− (<{ĥTi w} −
√

Γin0
)

tanφ ≤ 0,

∀ ‖êi‖2 ≤ δ2
i , ∀i.

(4)

For simplicity, we drop the subscripts in (4) and slit the real and
imaginary parts of the constraint into two separate constraints
real-valued functions as follows

ΨTw1−ΨTw2tanφ+δ ‖w1 −w2tanφ‖2+
√

Γn0tanφ ≤ 0, (5)

−ΨTw1 −ΨTw2tanφ+ δ ‖w1 + w2tanφ‖2 +
√

Γn0tanφ ≤ 0,
(6)

where ê ∆=
[
eR eI

]T and ĥ = hR + jhI + eR + jeI . Then (5)
becomes

min
{w1,w2}

‖w1‖22

s.t. Constraints (5) and (6), ∀i
where w1 = Πw2.

(7)

III. Robust Low-bit DNN-based SLP for Power
minimization Problem

This section presents robust binary and ternary DNN-based
SLP models (RSLP-BDNet and RSLP-TDNet). We begin first
by formulating the full-precision DNN-based SLP counter-
part (RSLP-DNet). From (7), we define the following: Q1 =

(Θ− tanφI) and Q2 = (Θ + tanφI). Therefore, constraints (5)
and (6) can be written as

ΛTQ1w2 + δ ‖Q1w2‖2 +
√

Γn0tanφ ≤ 0 (8)

ΛTQ2w2 + δ ‖Q2w2‖2 +
√

Γn0tanφ ≤ 0 (9)

Following this, (7) is thus

min
{w2}

‖w2‖22

s.t. Constraints (8) and (9), ∀i.
(10)

A. SLP using Interior Point Method
We begin by unfolding (10) using an IPM ‘log’ barrier func-

tion and transform it to its equivalent unconstrained sequence
of sub-problems per user [14]

min
w∈R2M×1

f(w2) + υB(w2), (11)

where B(·) , −
∑

ln (·) is the logarithmic barrier function,
υ is the Lagrangian multiplier for inequality constraints. The
learning framework is derived by defining a proximity operator
of (11) [14]

proxγυB(w2) = argmin
w2∈R2M×1

1
2 ‖w0 −w2‖

2

2
+ γυB(w2),

(12)
where γ ∈ {0, +∞} is the training step-size, w0 is the initial
precoding vector and υ is the Lagrange multiplier of the
inequality constraint.

1) Euclidean Constraint: It can be observed that the con-
straints (8) and (9) are bounded by the l2-norm of the form

C = {z ∈ Rn
∣∣ ‖z− x‖2 ≤ α}, (13)

where α > 0 and x ∈ Rn. The ‘log barrier function is given by
[23]

B(z) =
{
− ln

(
α− ‖z− x‖2

)
, if ‖z− x‖2 < α

+∞, otherwise.
(14)

Based on (14), the barrier function for (8) is expressed at
the bottom of this page. Similar expression can also be writ-
ten for (9). Therefore, the effective barrier function for the
two constraints is the sum of the individual barrier functions
B(w2) = B1(w2) +B2(w2).

It can be seen that the upper bounds of the two constraints
(8) and (9) are zeros. Therefore, combining (8) and (9), we
obtain(
δ2 −ΨT Ψ

)
G ‖w2‖22+4ΨTw2tanφ

√
Γn0 ≤ 2Γn0tan2φ (16)



where G = QT
1 Q1 + QT

2 Q2. Consequently, for each w2, the
proximity operator of the barrier γυB is

Ψ(w2, γ, υ) = 2Γn0tan2φ− χ(w2, γ, υ)2

2Γn0tan2φ− χ(w2, γ, υ)2 + 2γυw2 (17)

where χ(w2, γ, υ) is the analytical solution of the cubic equa-
tion [14]. The robust deep-unfolded model is derived according
to the derivatives of (17) with respect to w2, γ and υ as follows

JΨ |(w2)=
2Γn0tan2φ− ‖Ψ(w2, γ, υ)‖22

2Γn0tan2φ− ‖Ψ(w2, γ, υ)‖22 + 2γυ
×

M(w2, υ, γ), (18)

∆Ψ |(υ)=
−2γ

2Γw0tan2φ− ‖Ψ(w2, γ, υ)‖22 + 2γυ
×

M(w2, υ, γ) (Ψ(w2, υ, γ)) , (19)

∆Ψ |(γ)=
−2υ

2Γn0tan2φ− ‖Ψ(w2, γ, υ)‖22 + 2γυ
×

M(w2, υ, γ) (Ψ(w2, υ, γ)) , (20)

where M(w2, υ, γ) is as defined in [14].
We use the proximity operator of the barrier to obtain the

variable update function as follows

w[r+1]
2 = proxγ[r]υ[r]Brobust

(
w[r]

2 − γ
[r]∆f(w[r]

2 ,λ[r])
)

(21)

where f(w[r]
2 ,λ[r]) = ‖w1‖22 + λw2. We define the update

function D as

D(w[r]
2 , γ[r], υ[r],λ[r]) =

proxγ[r]υ[r]B

(
w[r]

2 − γ
[r]∆f(w[r]

2 ,λ[r])
)

, (22)

and ∆ = ∂f(w[r]
2 ,λ[r])

∂w[r]
2

.
2) Loss Function: The training loss function is the La-

grangian function of (10) obtained as

L(w2,υ1,υ2) = 1
N

N∑
i=1

‖w2‖22

+ υ1

N

N∑
i=1

[
δ2 ‖Q1w2‖22 −

(√
Γn0tanφ−ΨTQ1w2

)2]
+ υ2

N

N∑
i=1

[
δ2 ‖Q2w2‖22 −

(√
Γn0tanφ−ΨTQ2w2

)2]
+ µ

NL

N∑
i=1

L∑
i=1

‖Ωi‖22, (23)

where υ1 and υ2 are the Lagrangian multipliers of the two
inequality constraints. The Ωi(s) are the trainable parameters
of the i-th layers and µ > 0 is the penalty parameter that
controls the bias and variance of the learnable parameters. Note
that are associated with the barrier term and are randomly
initialized from a uniform distribution. The model is trained in
an unsupervised mode to update υ, λ, γ and w2 such that the

loss function is minimized. By minimizing (23) with respect to
w2, we obtain the optimal precoder(

1 +
(
υ1 ‖Q1‖22 + υ2 ‖Q2‖22

) (
δ2 −ΨTΨ

))
w2 =

− (υ1Q1 + υ2Q2) Ψ
√

Γw0tanφ. (24)

For clarity, we let
[
‖Q1‖22 ‖Q2‖22

]
= Q̄n,

[
Q1 Q2

]
= Q′

and
[
υ1 υ2

]
= ῡ. Hence, (24) is reduced to(

I2M + Q̄nῡ
T
(
δ2 −ΨT Ψ

))
w2 = −ΨQ′ῡT

√
Γn0tanφ (25)

The optimal transmit precoder is finally obtained as

w2 = −ΨQ′ῡTP−1√Γn0tanφ, (26)

where P =
(
I2M + Q̄nῡ

T
(
δ2I2M −ΨT Ψ

))
.

B. RSLP-DNet and the Generic NN Architecture
Intuitively, we can form NN cascade layers from (21) as

follows

w[l+1]
2 = proxγ[l]υ[l]B

[(
I2M − 2γ[l])w[r]

2 + γ[l]λ[l]1T
]

, (27)

where 1 ∈ R1×2M is a vector of ones. By letting Wl = I2M −
2γ[l], bl = γ[l]λ[l]1T and Ξl = proxγ[l]υ[l]B , the l-layer network
L[l−1] · · ·L[0] will correspond to the following

Ξ0 (W0 + b0) , · · · , Ξl (Wl + bl) , (28)

Wl and bl present weight and bias parameters, respectively,
and Ξl describes the nonlinear activation functions. Finally,
based on this formulation, RSLP-DNet is built as shown in
Fig. 2 and its internal DNN designs are summarised in Tables
I and II.

TABLE I: Proximity Barrier Term DNN Design

Layer Parameter, kernel size = 3× 3

Input Layer Input size (B, 1, 2M , K)
Layer 1: Convolutional Size (B, 20, 2M ,K2); zero padding
Layer 2: Average Pooling Size ((1, 1), stride = (1, 1))
Layer 3: Activation Soft-Plus
Layer 4: Flat Size (B× 40×K2)
Layer : Fully-connected Size(B× 40×K2, 1)
Layer 5: Activation Soft-Plus function

TABLE II: A PPU DNN Design

Layer Parameter, kernel size = 3× 3

Input Layer Input size (B, 1, 2M , K)
Layer 1: Convolutional Size (B, 16, 2M , K),

dilation = 1 and unit padding
Layer 2: Batch Normalization eps = 10−6, momentum = 0.1
Layer 3: Activation PReLu/k-bit function
Layer 4: Convolutional Size (B, 8, K, 2KM),

dilation = 1 and unit padding
Layer 5: Batch Normalization eps = 10−6, momentum = 0.1
Layer 6: Activation PReLu/k-bit function
Layer 7: Convolutional Size (B, 1, 2KM , 1),

dilation = 1 and unit padding

B1(w2) =
{
− ln

(
−
√

Γn0tanφ−
(
ΨTQ1w2 + δ ‖Q1w2‖2

))
, if ΨTQ1w2 + δ ‖Q1w2‖2 < −

√
Γn0tanφ

+∞, otherwise
(15)
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Fig. 2: Complete RSLP-DNet Architecture

C. Low-bit DNN Weights
Traditionally, DNN is designed with full-precision weights

and activations. The quantization schemes have been proposed
to design low-bit DNN models to address the problems of
limited storage capacity and reduce hardware requirements
during model deployment.

1) 1 Binary Weights:: The real-valued weights are converted
to (Wb ∈ {+1,−1}n). A full-precision 32-bitweight matrix is
binarized such that the weights W are converted to their
equivalent binary by the following function

Wb = sign(W) =
{

+1 if W ≥ 0
−1 otherwise,

(29)

A more robust binarized network “BWN” is proposed in [15]
as an extension of a straightforward binary network (Binary
Connect) by introducing a real scaling factor β ∈ R+ such that
W ≈ βWb by solving an optimization problem

J(Wb,β) =argmin
(Wb,β)

‖W− βWb‖22, (30)

and this yields

W∗
b = sign(W)

β∗ = 1
n
‖W‖1

(31)

2) 2 Weighted Ternary Weights:: A ternary weighted net-
work (TWN) is the one in which an extra 0 state is introduced
into BWN to solve the following optimization problem{

β∗, W∗
t = argmin

β, Wb

J(β, Wt ) = ‖W− βWt‖22

s.t. β ≥ 0, Wt ∈ {−1, 0, +1}n,
(32)

and as shown in [24], solving (32) gives

W∗
t =


+1 , if W > ρ

0 , if |W| ≤ ρ
−1 , if W < −ρ,

(33)

where ρ = 0.7
n

n∑
i=1
|W| and β∗ = 1

Iρ

∑
i∈Iρ
|W|,

Iρ = {|W| > ρ} is the cardinality of set Iρ. As an illustration,
Fig. 3 depicts how the weight matrices are quantised based on
(31) and (33).

D. RSLP-BDNet Training and Inference
The RSLP-BDNet has two central units; the parameter

update unit (PUU) and the post-processing unit (PPU). The
parameter unit has three core components; υ (associated with
the barrier term), λ and γ that are wired across the network (see
Fig. 2). The barrier term is formed with one convolutional layer,
an average pooling layer, a fully connected layer, and a softPlus
layer to satisfy the positive inequality constraint. The PUU has

Weight Tensor/Matrix Binary Weight Tensor/Matrix

Quantized rows

Weight Tensor/Matrix Ternary Weight Tensor/Matrix

Quantized rows

Fig. 3: Binary and Ternary DNN weights

r-th blocks, each representing a layer, and is trained block-wise
for l-th iterations. Similarly, the PPU is made up three convo-
lutional layers with batch normalisation layers in between them
except for the last layer, and is trained for k-th iterations. The
number of training iterations for the PUU may not necessarily
be the same as that of the PPU. We train the PUU unit for 15
iterations and the PPU 10 iterations with Adam optimizer [25].
We also adjust the learning rate by a factor ϑ ∈ R+ for every
training step to enhance the training convergence. Because the
learning is done unsupervised, we use regularised Lagrangian
function as a loss function. During the inference, forward pass
is performed over the entire layers with the learned Lagrangian
multipliers to compute the precoding vector using (26). The
inference is performed with different SINR values to calculate
the required optimal precoding matrix.

IV. Simulation, Results and Discussion

A. Simulation Set-up

We assume a single cell in a downlink scenario where the
BS having four antennas (M = 4) serves K, single users.
We generate 50000 training and 2000 test samples of channel
coefficients, respectively. The transmit symbols are modulated
using a QPSK modulation. The training SINR is randomly
generated from uniform distribution Γtrain ∼ U(Γlow, Γhigh) to
allow training over wide range of SINR values. parametric rec-
tified linear unit (PReLu) activation function is used in RSLP-
DNet instead of the traditional ReLu function to mitigate
the effect of dying gradient due to the saturation of neurons.
After every iteration, the learning rate is reduced by a factor
α = 0.65 to facilitate learning convergence. The simulation
parameters are summarized in Table 1. We implement the
models in Pytorch 1.7.1 and Python 3.7.8 on a computer with
the following specifications: Intel(R) Core (TM) i7-6700 CPU
Core, 32.0GB of RAM.



TABLE III: Simulation settings

Parameters Values

Training Samples 50000
Batch Size (B) 200
Test Samples 2000
Training SINR range 0.0dB - 45.0dB
Test SINR range (i-th user SINR) 0.0dB - 35.0dB
Initial Learning Rate η 0.001
Learning Rate decay factor ϑ 0.65
Number of blocks in the PUU Br = 2
Training Iterations for each block
of the PUU 15
Training iterations for PPU 10
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B. Performance Evaluation of and SLP-DNet RSLP-DNet

In this subsection, we consider a full-precision RSLP-DNet
and its quantized counterparts (RSLP-BDNet and RSLP-
TDNet). We use 4 × 4 MISO system with CSI error bounds
δ2 = 10−4, and QPSK modulation scheme. We compare the
average transmit power of RSLP-BDNet and RSLP-TDNet
against R-SLP-DNet [14] robust SLP optimization-based [5]
and conventional [22] BLP methods. Fig. 4 depicts how the
average transmit power increases with the SNR thresholds.
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Fig. 6: Comparison of average execution time per sample averaged
over 2000 test samples for Nonrobust and Robust precoding schemes,
i.e, conventional BLP, SLP optimization-based and SLP learning-
based models under M = 4, K = 4

The RSLP optimization-based is observed to show a significant
power savings of more than 60% compared to the conventional
RBPL solution. Similarly, the proposed RSLP-BDNet and
RSLP-TDNet show considerable power savings of 40% − 58%
against the conventional RBLP but lower lower than the RSLP
optimization-based solution.

Furthermore, we study the effect of the CSI error bounds
on the transmit power at 30dB. Fig. 5 depicts the variation
of the transmit power with increasing CSI error bounds. A
significant increase in transmit power can be observed where
the channel uncertainty lies within the region of CSI error
bounds of δ2 = 10−3. Interestingly, like the RSLP optimization-
based, by exploiting the CI, the proposed methods show a
descent or moderate increase in transmit power.

C. Computational Complexity Evaluation
The computational costs of the proposed learning methods

are obtained from the PUU and the feed-forward convolutions
of the CNN that makes up the PPU. For the PUU, the
dominant computation is in computing the proximal barrier
functions, which requires computing the ‘log’ of the barrier and
the shallow CNN structure. It can be seen that both RSLP
optimization-based and the proposed schemes are feasible for
all sets of M BS antenna and K mobile users. However, for
conventional RBLP, the solution is only feasible for M ≥ K.

Fig. 6(a) shows the average execution time of the proposed
learning solutions per symbol averaged over 2000 test samples.
We observe that while RSLP-DNet is faster than both RSLP
optimization-based and conventional RBLP, RSLP-BDNet and
RSLP-TDNet offer much less average execution time by ∼ 3×
and ∼ 5× compared to RSLP-DNet, respectively. This because
most of the MACs operations are replaced by binary bit-
wise operations. RSLP-TDNet is slightly slower than RSLP-
BDNet due to the additional ‘0’ binary state introduced in the
former. Accordingly, we binarized DNN could offer significant
training and inference accelerations while offering good trade-
off between the performance and computational complexity.

The size of the DNN is often bounded by the available
memory. Therefore, it is beneficial to estimate the memory
requirements of the DNN at the inference. We examine and
analyze the memory utilization of full-precision RSLP-DNet
and its corresponding quantized versions at inference. We adopt
the approach presented in [26] to calculate the inference mem-
ory utilization as the summation of 32-bit times the number of
floating-point parameters and 1-bit times the number of binary



TABLE IV: Inference memory utilization comparison

Models Weights Activations Memory Memory
usage (MB) saving

RSLP-DNet (32− bit) ∈ R (32− bit) ∈ R 0.1898 −
RSLP-BDNet {−1, +1} {−1, +1} 0.0089 21.33×
RSLP-TDNet {−1, 0, +1} {−1, +1} 0.0146 13×

parameters, expressed as 1
32Wb + Wf , where Wb and Wf are

the binary and floating-point weights, respectively. Table IV
presents the summary of the inference memory requirements,
where we observe tha RSLP-BDNet and RSLP-TDNet provide
considerable memory savings up to ∼ 21× and ∼ 13× com-
pared to the RSLP-DNet, respectively.

V. Conclusion

This paper proposes robust binary and ternary unsupervised
learning-based SLP designs for downlink power minimization
optimization. The real-valued NN weights are converted to
binary values, allowing the operations between the inputs and
weights tensors to be performed in binary operations. We use
domain knowledge to design unsupervised learning architec-
tures by unfolding the proximal interior point method barrier
‘log function for a relaxed phase rotation. The performance is
within the range of 89% − 95% of the RSLP optimization-
based solution with a substantial computational complexity
reduction. Therefore, our proposals demonstrate an indispens-
able balance between the performance and the computational
complexity involved.
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