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Figure 1: Left: Frame segments of encoder vs. DPP+encoder at the same bitrate. Right: Bjontegaard delta-rate vs. runtime
(in multiples of x264 slow preset runtime on CPU) for codec only (red) and DPP+codec (green). More negative BD-rates cor-
respond to higher average bitrate savings for the same visual quality. x264: AVC/H.264, aomenc: AV1, vvenc: VVC/H.266).

Abstract

We introduce the concept of rate-aware deep perceptual
preprocessing (DPP) for video encoding. DPP makes a sin-
gle pass over each input frame in order to enhance its visual
quality when the video is to be compressed with any codec
at any bitrate. The resulting bitstreams can be decoded
and displayed at the client side without any post-processing
component. DPP comprises a convolutional neural network
that is trained via a composite set of loss functions that in-
corporates: (i) a perceptual loss based on a trained no-
reference image quality assessment model, (ii) a reference-
based fidelity loss expressing L1 and structural similar-
ity aspects, (iii) a motion-based rate loss via block-based
transform, quantization and entropy estimates that converts
the essential components of standard hybrid video encoder
designs into a trainable framework. Extensive testing using
multiple quality metrics and AVC, AV1 and VVC encoders
shows that DPP+encoder reduces, on average, the bitrate
of the corresponding encoder by 11%. This marks the first
time a server-side neural processing component achieves
such savings over the state-of-the-art in video coding.

1. Introduction

Streaming high-resolution video comes with an in-
evitable trade-off between available bandwidth and visual
quality. In recent years, many video compression stan-
dards have been developed, such as Advanced Video Cod-
ing (AVC) and AOMedia Video 1 (AV1), which offer a
number of advanced coding and prediction tools for effi-
cient video encoding and transmission. While these codecs
are widely deployed in industry, with AVC still accounting
for the largest share of video streaming volume worldwide,
the encoding tools are handcrafted and not entirely data de-
pendent. This has led to an increased interest in learned
video compression methods [23, 12, 10, 34], which claim
to offer better encoding efficiency by training deep neural
networks to improve the rate-distortion performance. How-
ever, these methods come with their own pitfalls; typically
they require bespoke encoder, bitstream and decoder com-
ponents for end-to-end optimization. The decoder is typi-
cally computationally heavy and not viable for deployment
on CPU-based commodity devices such as mobile phones.
Additionally, work in learned video compression [23, 43]
tends to be benchmarked against codecs with limited tools
enabled: ‘very fast’ preset, low-latency mode and GOP



sizes of 10 frames. It is unclear if learned video compres-
sion methods outperform standards under their more ad-
vanced (and most widely used) encoding settings.

In this work we aim to bridge the gap between the data
adaptivity and scalability of learned compression methods
and the performance and off-the-shelf decoding support of-
fered by standard codec implementations. To this end,
our proposed deep perceptual preprocessor (DPP) simply
prepends any standard video codec at inference, without re-
quiring any bespoke encoder of decoder component. The
key aspect of our proposal is that it offers rate-aware per-
ceptual improvement by encapsulating both perceptual and
fidelity losses, as well as a motion-based rate loss that en-
capsulates the effect of motion-compensated prediction and
entropy coding. In addition, our trained DPP models re-
quire a single pass over the input and all encodings with
different standards-based encoders at various bitrates and
resolutions can be subsequently applied to the DPP output.
Experiments versus state-of-the-art AVC, AV1 and Versa-
tile Video Coding (VVC) [13] encoders show that DPP al-
lows for 11% average reduction in bitrate without requiring
changes in encoding, streaming, or video decoding.

We summarize our contributions as follows:

1. We propose a deep perceptual preprocessor (DPP) that
preprocesses the input content prior to passing it to any
standard video codec, such as AVC, AV1 or VVC.

2. We train the DPP in an end-to-end manner by virtual-
izing key components of a standard codec with differ-
entiable approximations. We balance between percep-
tion and distortion by using an array of no-reference
and reference based loss functions.

3. We test our models under the most stringent testing
conditions: multi-resolution, multi-QP, convex-hull
optimization per clip and high-performance AVC, AV1
and VVC presets used extensively by Netflix, Face-
book, Intel in several benchmark papers [18, 20, 19].

Visual comparisons of encoder versus DPP+encoder out-
puts are shown in Fig. 1 (left), illustrating the visual quality
improvement that can be achieved at the same bitrate. Fig. 1
(right) illustrates how DPP is able to offer consistent bitrate
savings across three video coding standards of increasing
sophistication and complexity, while its runtime overhead
diminishes in comparison to the encoding runtime.

2. Related Work

2.1. Compression

Recent work in learned image [2, 3, 33, 38] or video
[23, 12, 10, 34] compression tends to replace the entirety of
a standard transform coding pipeline with neural networks.

That is, a neural network-based encoder learns to transform
an image or video x into a latent vector y. The latent vec-
tor is quantized, yielding a discrete valued representation ŷ,
upon which rate is minimized via differential entropy com-
putation:

R = Eŷ log2 p(ŷ) (1)

Given that quantization and prior density p(ŷ) estima-
tion for entropy computation are non-differentiable opera-
tions [2, 38], these are instead represented with continu-
ous approximations. The reconstructed image or video x̂
can thus be generated from ŷ with a neural-network based
decoder. The error between the reconstructed input x̂ and
original input x can be minimized via a distortion measure
Δ, such as mean squared error (MSE) or mean absolute er-
ror (MAE):

D = Ex,x̂Δ(x, x̂) (2)

The encoder and decoder thus constitute an (variational) au-
toencoder framework [2, 3, 10, 15], and this framework is
trained end-to-end to jointly optimize rate and distortion
with loss L = D + λR, where λ is the Lagrange mul-
tiplier that controls the rate-distortion tradeoff [29]. In the
case where the prior density model is fully factorized, statis-
tical dependencies between elements of ẑ can be modelled
with a (scale) hyperprior [3, 10]; however, any additional
encoding bits must be transmitted as side information.

Contrary to recent methods in learned compression, stan-
dard image or video codecs typically adopt orthogonal lin-
ear transforms to the frequency domain, where the data
is decorrelated and easier to compress. While the trans-
form coefficients are not necessarily data adaptive and can
exhibit strong joint dependencies [35, 36], the parameters
are exposed and can be finely tuned. While learned video
compression has shown some promise for high-bitrate low-
delay video compression [23, 2, 3, 12, 34], standard codecs
like AVC and HEVC surpass all current methods in learned
video compression in terms of standard metrics like SSIM
and VMAF when the former are used with all their ad-
vanced prediction and entropy coding tools enabled [11].
In addition, more advanced encoder designs of the AO-
Media AV1 [14] and MPEG/ITU-T Versatile Video Cod-
ing (VVC) standards [39] now include neural components
for optimized encoding tool selection [14]. Such standards
allow for decoders on CPU-based commodity devices like
tablets and mobile phones and there is no need for bespoke
encoder or decoder components that require joint optimiza-
tion, as in recent proposals [9, 1].

2.2. Metrics

Performance of compression methods is typically eval-
uated by plotting rate-distortion curves. Rate is measured
in bits per pixel (bpp) or bits-per-second (bps) for video.
In recent work, distortion is typically evaluated in terms of



PSNR or SSIM. However, while these metrics are viable
options for measuring reconstruction error from the source,
they do not capture perceptual quality of the content. Per-
ceptual quality is instead captured by the divergence be-
tween the distribution of reconstructed images p(x̂) and
original images p(x). Blau et al. [7] mathematically proved
the existence of a perception-distortion bound where dis-
tortion must be traded off with perceptual quality or vice
versa. This work was extended further to incorporate rate,
where it was derived that, in order to improve perceptual
quality, either rate or distortion must be increased [8]. In-
deed, for constant rate, distortion must be increased to in-
crease perceptual quality and this tradeoff is strengthened
at low rates. Furthermore, perfect perceptual quality cannot
be achieved by only optimizing a distortion measure. How-
ever, the tradeoff between perception and distortion for con-
stant rate can be weakened for perceptually-oriented distor-
tion measures that capture more semantic similarities.

Given the above, we consider other metrics for eval-
uating our method, beyond SSIM and PSNR. Notably,
VMAF is a perceptually-oriented full-reference (FR) dis-
tortion metric, which has been developed and is com-
mercially adopted by Netflix, Facebook, Intel, AOMedia
standardization, and several others for codec evaluation
[18, 20, 19, 31, 28, 14] and A/B experimentation [19].
VMAF has two primary components: visual information
fidelity (VIF) and detail loss metric (DLM), and their re-
spective scores are fused into a single prediction with sup-
port vector regression (SVR). Multiple independent studies
have shown that VMAF is significantly more correlated to
human opinion scores than SSIM and PSNR [30, 4, 45].

Recently, a more compression-oriented variant of
VMAF, VMAF NEG [19], has been proposed by Netflix
for isolating compression artifacts from general perceptual
quality enhancement (e.g., contrast enhancement). Essen-
tially, VMAF NEG is derived by clipping the local gain
terms in VIF and DLM to 1.0, thus penalizing linear en-
hancement operations. In this paper, we present results in
terms of VMAF, VMAF NEG and SSIM, to demonstrate
how our method traverses the perception-distortion space.

3. Deep Perceptual Preprocessor

3.1. Overview of Proposed Method

In this section, we describe our deep perceptual prepro-
cessing (DPP) framework for video preprocessing. Essen-
tially, the objective of our preprocessing framework is to
provide a perceptually optimized and rate-controlled repre-
sentation of the decoded input frame via a learnable pre-
processing approach. On one hand, the preprocessing must
have some level of encoder-awareness such that it can adapt
to visual distortions induced by changing standard codec
settings such as quantization parameter (QP) and constant

rate value (CRF). On the other hand, in order to main-
tain a single-pass preprocessing and to avoid training a pre-
processing model for every single codec and configuration,
the preprocessing must have a marginalized response over
the codec parameter space. To this end, we propose to
model or ‘virtualize’ the basic building blocks of a standard
video coding pipeline, such that we can approximate the
rate-distortion behavior over standard video codecs. The
core codec components we model are inter/intra prediction,
adaptive macroblock selection, spatial frequency transform
and quantization. This virtual codec is appended to our
preprocessing neural network and the resulting DPP frame-
work is trained end-to-end with our proposed loss formu-
lations. In this way, we perform perceptual and codec-
oriented rate-distortion optimization over the preprocessing
network parameters. Notably, in order to aid with marginal-
ization, we also expose parameters such as QP, which can
be adjusted during training. During inference/deployment,
the virtual encoder is removed and replaced with a standard
codec, such as an MPEG or AOMedia encoder.

The training and deployment frameworks are illustrated
in Figure 2a. Each color outlines a different component
in the training framework. For a given video sequence
V = {x1 . . . xt, xt+1 . . . xN} with N frames, the green
blocks represent the preprocessing network that maps input
video frame xt at time t to preprocessed frame pt. The or-
ange blocks represent the components for inter (motion esti-
mation + compensation) and intra prediction, which output
a predicted frame p̃t and residual frame rt by performing
block matching between the current and reference frames.
Importantly, in this paper we focus on an open loop codec
implementation for inter prediction and exclude the red ar-
row in the figure. The grey blocks represent the spatial
transform and quantization components for encoding and
compressing the residual. The residual frame is transformed
to the frequency domain output yt and quantized to ŷt, with
the quantization level controlled by the quantization param-
eter (QP). We model the rate of ŷt with an entropy model,
as represented with the yellow block, as this is what a stan-
dard encoder would losslessly compact into the compressed
bitstream. The blue blocks represent YUV to RGB conver-
sion and the perceptual model that we use collectively to
quantify perceptual quality, based on mean opinion scores
(MOS). These components will allow us to train the prepro-
cessing network to enhance the perceptual quality of recon-
structed frame p̂t.

3.2. Learnable Preprocessing

The input video frames are first processed individually
by a preprocessing block, represented in green in Figures
2a and 2b. The preprocessing block F (x; Θ) comprises
a pixel-to-pixel mapping F , with associated parameters Θ.
For efficient deployment, preprocessing only processes the



(a) Deep perceptual preprocessor (DPP) framework

(b) Open loop schematic for DPP

Figure 2: (a): Deep perceptual preprocessor framework for training perceptually-enhanced & rate-controlled representation
of input frames via a learnable preprocessing. Dashed arrows represent optional components. (b): Schematic showing the
perceptual preprocessor training framework in open loop configuration with loss functions.

luminance (Y) channel only, since it contains all of the
frame’s structural information and is the main contributor to
perceptual sharpness and bitrate, which constitute our main
objectives for optimization. Specifically, for input frame
x ∈ RH×W scaled to range [0, 1] and modelled represen-
tation p̂, the intention is to optimize parameters Θ, in or-
der to achieve a balance on p̂ between the perceptual en-
hancement, rate control and fidelity to x. The mapping F
is implemented as a convolutional neural network (CNN)
with single-frame latency (assuming the supporting hard-
ware can carry out the CNN inference fast enough). In order
to reduce the network complexity while allowing for larger
receptive field sizes and maintaining translational equivari-
ance, we utilize dilated convolutions [44] with varying dila-
tion rates per layer. The neural network weights constitute
the parameters Θ that we intend to optimize for perceptual
quality, rate and distortion in our training framework.

3.3. Inter and Intra Prediction

The preprocessing network maps current video frame
xt at time step to t to pt. The next step is to generate
the residual frame rt via intra or inter prediction. A stan-
dard video codec such as H.264/AVC adaptively divides the
frame into variable-sized macroblock partitions and sub-
partitions, typically varying from 16×16 to 4×4. Let us first
assume a fixed block size. Under this assumption, the pre-
processed frame pt is first divided into a set of blocks of the
fixed size K ×K. For a block in the current frame centered
on the pixel location (n1, n2) ∈ [(0, 0), (H − 1,W − 1)], a

local search space centered on (n1, n2) and of size M ×M
is extracted from the reference frame. A similarity criterion
is used to find the best matching block of size K × K to
the current frame block within the local search space. For
inter prediction, the local search space is extracted from the
previous frame, pt−1. The similarity criterion ε can thus be
expressed at (n1, n2) as:

ε(m1,m2) ,
∑

(k1,k2)

d(pt(n1 + k1, n2 + k2),

pt−1(n1 + k1 + m1, n2 + k2 + m2))
(3)

where the coordinates (k1, k2) ∈ [(0,K − 1), (0,K −
1)] shift the pixel location within a K × K block and
(m1,m2) ∈ [(−M

2 ,−M
2 ), (M

2 , M
2 )] represent the block

displacement within the local search space of the reference
frame. d represents the similarity measure, which in this
paper is set to mean absolute error (MAE), given its bet-
ter handling of outliers than mean squared error (MSE).
Importantly, the operation in (3) can be easily vectorized,
which enables efficient end-to-end training on GPUs (at the
cost of higher memory allocation). Then, for the given
current frame block, the optimal block displacement m =
(m∗

1,m
∗
2)

T in the reference frame is given as:

(m∗
1,m

∗
2) = arg min

(m1,m2)

(ε(m1,m2)) (4)



The displacement or motion vector m∗ = (m∗
1,m

∗
2)

T is
encoded for each block in the current frame. However, the
arg min in (4) has zero gradients almost everywhere with
respect to the input and therefore is not differentiable. This
poses a problem if we wish to optimize the DPP with end-
to-end backpropagation from the reconstructed frame p̂t

back to the input frame xt. In order to resolve this, we first
express (4) in terms of a one-hot matrix, which we denote
as 1arg min(m)(ε)

, where the matrix is 1 at index (m∗
1,m

∗
2)

and 0 for all other (m1,m2). We approximate the argmin
operation by using a straight-through estimator [5]. Our
approach is analogous to gumbel-softmax [16] except that
we are not sampling over a discrete distribution but deter-
ministically extracting the optimal block based on ε. The
predicted frame p̃inter

t is then configured as: p̃inter
t (n1 +

k1, n2 + k2) =
∑

(m1,m2)
1(m∗)(m1,m2).pt−1(n1 + k1 +

m1, n2+k2+m2) and the residual frame rt is simply equal
to the difference between the predicted frame and current
frame: rt = pt − p̃inter

t .
For intra prediction, we follow a similar approach for

generating p̃intra
t , except the reference frame from which

we extract the local search space is from the current frame
pt itself (but masking the block being queried and only
searching in the causal neighborhood around the queried
block). In this way, we are able to emulate all translational
intra prediction modes.

3.4. Transform and Quantization

The residual frames rt are transformed in our framework
into the frequency domain for further energy compaction,
akin to a standard video codec. The forward transform is
typically a two-dimensional discrete transform (DCT) fol-
lowed by quantization. In this paper, we opt for the 4 × 4
core and scale transforms of the integer DCT defined in
the H.264/AVC standard [26], after rescaling rt between
[0,255]. The transformed and scaled frame yt is then quan-
tized by dividing by a quantization value Qstep and round-
ing, with Qstep being randomly selected during training
from a range of values. We manually assign the first 6
values of Qstep based on the equivalent values for AVC
QP in the range [0,5]. We can then draw a direct equiva-
lence between Qstep and the QP setting used in AVC en-
coding [32]. We denote the quantized frame as ŷt. We fur-
ther note that the rounding operation in quantization is non-
differentiable – we thus approximate rounding with additive
uniform noise during training (i.e. ŷt = yt

Qstep
+Δyt, where

Δyt is additive i.i.d uniform noise with support of width 1).
In a standard video coding pipeline, ŷt is the representation
that would be encoded to bits with an entropy coder such
as CAVLC or CABAC [27]. The quantization and forward
transform can then be inverted by multiplying by Qstep and
taking the inverse integer DCT, thus producing the recon-
structed residual r̂t. The reconstructed frame p̂t is equal to

p̃t + r̂t.

3.5. Entropy Model

Given that we aim to optimize our preprocessing on rate,
we must minimize the number of bits required to encode
the DCT transformed and quantized frame ŷt. This can be
estimated by computing the entropy as in (1). However, as
discussed, the prior density p(ŷt) must be estimated with
a continuously differentiable approximation, such that we
can compute the number of bits to encode the DCT sub-
bands in a differentiable manner. To this end, we can model
p(ŷt) as a factorized prior. The disadvantage of assuming a
factorized prior on ŷ is that it does not account for the strong
non-linear dependencies between subband coefficients [35,
24, 40]. Rather than extending the factorized prior with a
hyperprior [3], which would require additional training and
deviate further from standard codec operation, we propose a
simple spatial divisive normalization which has been shown
to decorrelate DCT domain coefficients per sub-band [25].
We denote the divisively normalized coefficients as zn,s,t,
where index n runs per subband over all spatial coordinates.

In this way, we can assume a factorized prior p(z) on z
instead of ŷ:

p(zt; Φ) =
∏

n,s

p(zn,s,t; Φ
(s)) (5)

In other words, we assume an independent univariate
density model for each subband, parameterized by Φ(s), but
that all spatial dimensions are i.i.d.. Each subband model is
learned with the non-parametric implementation defined by
Balle et al. [3]. During end-to-end training, we can recon-
struct ŷ from z by simply taking the inverse transform.

3.6. Perceptual Model

We aim to perceptually enhance our decoded input frame
representations p̂t, under the rate and distortion constraints
introduced by lossy compression. Rather than train full-
reference (FR) perceptual model that would transform pair-
wise distortion between p̂t and xt into a MOS score, we opt
for a no-reference (NR) perceptual model that can better en-
capsulate deviations from natural scene statistics to assess
perceptual quality of p̂t. The requirement of NR models
to assess perceptual quality has been extensively discussed
by Blau et al. [7, 8]. Given that we do not have access
to MOS scores for preprocessed frames, we must first pre-
train the perceptual model. The trained perceptual model
is thus frozen in the DPP framework and used to derive the
perceptual loss LP , as illustrated in Figure 2b. Our archi-
tecture is a directed acyclic graph (DAG) variant of NIMA
[37]. Essentially, we fine-tune a VGG-16 model that has
been pre-trained on ImageNet. The fully connected lay-
ers are removed and replaced with global average pooling



and single fully connected layer with 5 neurons. A soft-
max function maps the output to a distribution over human
ratings, or ACR distribution, ranging from from poor (1)
to excellent (5). To give the output layer access to multi-
scale and multi-semantic representations of the input, we
also global average pool intermediate layer activations and
concatenate the pooled activations over layers. The model is
thus trained to minimize the total variation distance between
predicted and reference human rating distributions. We note
that given that our perceptual model is trained on human-
rated RGB images, it is necessary in our perceptual prepro-
cessing framework to first convert the luminance frame p̂t

to RGB frame p̂RGB
t . We perform a transform from YUV

to RGB space by first concatenating p̂t with the lossless U
and V components of the RGB input, xRGB

t .

3.7. Loss Functions

Our overall objective is to train our preprocessing
F (xt; Θ) to perform perceptually-oriented rate-distortion
optimization on the decoded frame representations p̂t rel-
ative to the input video frames xt. Assuming the domain
shift between our virtual codec and standard video codec
is marginal, this should equate to optimizing the rate and
distortion of the decoded frames during deployment with
a standard video codec. To this end, we train the CNN
of the preprocessor end-to-end with the building blocks of
our DPP framework and a perceptual loss (LP), rate loss
(LR) and fidelity loss (LF) (as illustrated in Figure 2b).
The overall loss function for training the preprocessing can
thus be written as a weighted summation: L(xt, p̂t; Θ) =
γLP + λLR + LF, where γ and λ are the perceptual and
rate coefficients respectively. It is worth noting that con-
trary to neural encoders, where changing λ maps to a new
rate-distortion point, λ in this case shifts the entire rate-
distortion curve mapped over multiple QPs/CRFs - this be-
havior is illustrated in the ablation study on λ in the sup-
plementary. Given that we marginalize over QP, λ gives the
flexibility to explore the entire rate-distortion space.

Fidelity Loss, LF: In order to ensure a likeness be-
tween the input luminance frame xt and the perceptually
enhanced and rate constrained decoded frame representa-
tion p̂t, we train the preprocessing with a combination of
fidelity losses. As discussed by Zhao et al. [46], the L1 dis-
tance is good for preserving luminance, whereas multiscale
structural similarity (MS-SSIM) [41] is better at preserving
contrast in high frequency regions. Our fidelity loss can
thus be written as the summation:

LF(xt, p̂t; Θ) = Ext,p̂t

[
αLL1(xt, p̂t; Θ)

+ β(1 − LMS−SSIM(xt, p̂t; Θ)]
(6)

where LL1(xt, p̂t) = |xt − p̂t| and LMS−SSIM represents
the MS-SSIM function (as defined by Wang et al. [41]), and

α and β are hyperparameters which control the weighting
on structural versus luminance preservation.

Rate Loss, LR: The virtual codec rate loss LRs per DCT
sub-band s is defined on the divisively normalized trans-
form coefficients zt:

LRs
(zt; Θ, Φ) = −Ezt

∑

n

(log2(p(zn,s,t; Φ
(s))) (7)

where n runs over all spatial coordinates of each sub-band.
The final rate loss is simply the summation over all sub-
bands: LR =

∑S
s=1 LRs , where S = 16 for a 4 × 4 DCT.

The rate loss represents an approximation (upper bound) to
the actual rate required to encode the preprocessed frames.

Perceptual Loss, LP: We quantify perceptual quality
with our perceptual model P , which is pre-trained and
frozen during the DPP training. Essentially, we aim to
maximize the mean opinion scores (MOS) of our decoded
RGB frame representations p̂RGB

t , independent of the refer-
ence frame xRGB

t , but derived on the natural scene statistics
(NSS) learned from training the perceptual model on a cor-
pus of natural images. To this end, we minimize:

LP(p̂t; Θ) = −Ep̂t

5∑

i=1

i(P (p̂RGB
t )i) (8)

where the inner summation represents the predicted MOS
score, as the mean over the predicted ACR distributions.

4. Experimental Results

4.1. Implementation Details

The perceptual model P is first trained on Koniq-10k no-
reference IQA dataset [22] using stochastic gradient descent
with momentum set to 0.9 and an initial learning rate of
1×10−3. The perceptual model is then frozen and the deep
preprocessing framework is trained on Vimeo-90k dataset
[42] in an end-to-end manner, under the open loop con-
figuration illustrated in Figure 2b and loss function as de-
fined in Section 3.7. Let us denote Conv(f, c, r) as con-
volutional layers, with f being the kernel size, c the num-
ber of channels and r the dilation rate. The preprocessing
architecture can thus be expressed as: Conv(3, 16, 1) →
Conv(3, 16, 1) → Conv(3, 16, 2) → Conv(3, 16, 4) →
Conv(3, 16, 8) → Conv(3, 16, 1) → Conv(3, 1, 1). Each
convolutional layer is followed by a parametric ReLu acti-
vation function and we train on 224 × 224 fixed crop sizes.
During training we alternate between our inter and intra pre-
diction blocks; we follow a standard encoding pipeline and
default to inter prediction only, switching to intra predic-
tion for 1 mini-batch every 100 training iterations (i.e. in
correspondence to 1 I-frame every 100 P or B frames). The
local search space size M is fixed at 24. The network is



(a) MS-SSIM (b) PSNR

Figure 3: Proposed DPP+H264 and DPP+H265 versus
DVC [23] on the first 100 frames of HEVC Class B se-
quences. Points are plotted up to 0.12 bits per pixel (bpp).

trained with Adam optimizer and learning rate is decayed
when metrics saturate on the validation dataset. Finally, we
follow Zhao et. al [46] and fix hyperparameters α and β
to 0.2 and 0.8 respectively. For the core hyperparameters
that control the rate-perception-distortion tradeoff, λ and γ,
we fix γ to 0.01 and vary λ ∈ [0.001, 0.01]. We present an
ablation of these parameters in the supplementary material.

At deployment, we only retain the part of the preprocess-
ing that comprises the learned pixel-to-pixel mapping; the
virtual codec is replaced with a standard video codec, with
the decoded frame perceptually enhanced and at the same
or lower bitrate than achievable without any preprocess-
ing. Importantly, we achieved real-time performance for
full-HD video (1080p@50fps) on a single NVIDIA Tesla
T4 GPU by porting our trained models to OpenCV CUDA
primitives and fp16 arithmetic. For CPU execution, by port-
ing our models to OpenVINO and quantizing them to int8,
we achieved real time for 1080p@60fps on 12 cores of an
Intel Cascade Lake CPU with no detriment in visual quality.

4.2. Experimental Setup for BD-Rate Results

We present a detailed evaluation of different models us-
ing standard 1080p XIPH and CDVL sequences1. Our an-
chor encoders comprise AVC/H.264, AV1 and VVC, utiliz-
ing the libx264, aomenc and vvenc open implementations of
these standards. We deliberately focus on a very-highly op-
timized encoding setup that is known to outperform all neu-
ral or run-of-the-mill proprietary video encoders by a large
margin [17, 11, 39, 9]. Our aim is to examine if DPP can
push the envelope of what is achievable today under some
of the most-advanced encoding conditions used in practice.

Our x264/AVC encoding recipe is: veryslow preset, tune
SSIM and multiple CRF values per resolution. Our aomenc
AV1 recipe is: two-pass encoding, CPU=5, ‘tune SSIM’ or
‘tune VMAF’ preprocessing options, and multiple target bi-

1XIPH source material: https://media.xiph.org/video/derf/ and CDVL
material: https://www.cdvl.org/. See supplementary results for more de-
tails on exact sequences used.

trates per resolution2. Our vvenc recipe used the slow preset
and multiple CRFs per resolution. All encodings were pro-
duced using GOP size of 150 frames (128 for VVC) and
for multiple resolutions, ranging from the 1080p original
resolution all the way to 144p by using FFmpeg Lanczos
downscaling. All lower resolutions are upscaled with FFm-
peg bicubic to 1080p prior to quality measurements [21].
All Bjontegaard delta-rates (BD-rates) [6] are produced by
first finding the subset of monotonically-increasing bitrate-
quality points that are in the convex hull of the quality-
bitrate curve, and then using the Netflix libvmaf reposi-
tory [21] to measure SSIM, VMAF NEG, VMAF and BD-
rates. The convex hull is computed over all resolutions,
CRFs/bitrates and multiple rate coefficients λ, such that, per
metric, we obtain a single RD-curve for both the codec and
our proposed DPP+codec. Full details of this convex hull
optimization, along with the utilized encoding recipes can
be found in the supplementary.

4.3. Comparison Against Neural Encoders

Before moving to our main results, we present a short
comparison against neural encoders, selecting the recently-
proposed DVC framework [23] as a representative candi-
date of the state-of-the-art. Such neural encoders have
been shown to outperform AVC and HEVC when the lat-
ter are using: no B slices, ‘veryfast’ preset, low-latency
mode (which disables most advanced temporal prediction
tools), and very small GOP sizes of 10 or 12 frames. How-
ever, they are not able to approach the performance of these
hybrid encoders, or indeed that of our framework under
the state-of-the-art experimental setup of Section 4.2. This
is evident in the example results of Fig. 3, where DVC
is very substantially outperformed in terms of bitrate vs.
PSNR and MS-SSIM (the metrics used in their work) by
both DPP+AVC/H.264 and DPP+HEVC/H.265 under our
encoding recipe.

4.4. BD-Rate Results with H.264/AVC and AV1

The results of Fig. 4 and Table 1 and Table 2 show
that the average rate saving over VMAF, VMAF NEG and
SSIM for both H.264 and AV1 standards is just above
11%. As expected, our gains are higher on metrics that
are increasingly perception-oriented rather than distortion-
oriented: on VMAF, our framework offers 18% to 25% sav-
ing; on VMAF NEG, they are between 7% to 11% and on
SSIM they are 1% to 3%. This makes the average BD-rate
of all three metrics a reliable estimate of the bitrate sav-
ing that can be offered in practice, since this average is
influenced by performance in both distortion (SSIM) and
perception-oriented dimensions (VMAF and VMAF NEG).

2We note that preprocessing techniques such as ‘tune VMAF’ and ‘tune
SSIM‘ operate in-loop, i.e., within a specific encoder. As such, our method
can offer gains on top of them.



Figure 4: Rate distortion curves for 16 XIPH sequences (top row) and 24 CDVL sequences (bottom row) on VMAF,
VMAF NEG and SSIM respectively. Curves are plotted for the codec and for our proposed DPP+codec. The corresponding
BD rates for our method are reported in Tables 1 and 2, respectively, for each dataset.

VMAF VMAG NEG SSIM

DPP+H264+tune ssim -18.57 -11.37 -2.93

DPP+AV1+tune ssim -22.03 -10.64 -2.45
DPP+AV1+tune vmaf -19.44 -7.98 -2.23

DPP+VVC -17.08 -4.71 -4.55

Table 1: BD rates on 16 XIPH sequences for DPP+
H264, DPP+AV1 (with perceptual settings tune ssim and
tune vmaf) and DPP+VVC. More negative=more saving.

4.5. BD-Rate Results with VVC

We report BD-rate savings for VVC in Table 1 and Table
2. The average saving over all three metrics is 8.7%. The
fact that our framework offers consistent savings over vvenc
further illustrates the validity of DPP across encoders, en-
coding recipes, and convex-hull rate-distortion optimized
encoding [17], which is summarized in Fig. 1 (right).

5. Conclusion

We propose deep perceptual preprocessing (DPP) as the
means of generating a perceptually-enhanced, rate-aware
representation of each input frame via a learnable prepro-
cessing framework. DPP models the building blocks of a
standard video encoder in order to optimize the proposed

VMAF VMAG NEG SSIM

DPP+H264+tune ssim -19.80 -11.41 -2.73

DPP+AV1+tune ssim -25.23 -11.41 -2.47
DPP+AV1+tune vmaf -24.96 -8.20 -1.20

DPP+VVC -18.56 -4.93 -2.54

Table 2: BD rates on 24 CDVL sequences for DPP+
H264, DPP+AV1 (with perceptual settings tune ssim and
tune vmaf) and DPP+VVC. More negative=more saving.

preprocessing for rate, distortion and perceptual quality in
an end-to-end differentiable manner. At inference, only the
preprocessor is deployed to carry out a single pass through
each frame prior to any standard encoder. Our frame-
work delivers consistent gains for three quality metrics with
different perception-distortion characteristics and for three
very different encoders used at their performance limits. It
is also easily deployable as it attains real time performance
on commodity hardware without requiring any changes in
encoding, streaming or video decoding at the client side.
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