179 research outputs found

    States on pseudo effect algebras and integrals

    Full text link
    We show that every state on an interval pseudo effect algebra EE satisfying some kind of the Riesz Decomposition Properties (RDP) is an integral through a regular Borel probability measure defined on the Borel σ\sigma-algebra of a Choquet simplex KK. In particular, if EE satisfies the strongest type of (RDP), the representing Borel probability measure can be uniquely chosen to have its support in the set of the extreme points of $K.

    Extensions and degenerations of spectral triples

    Full text link
    For a unital C*-algebra A, which is equipped with a spectral triple and an extension T of A by the compacts, we construct a family of spectral triples associated to T and depending on the two positive parameters (s,t). Using Rieffel's notation of quantum Gromov-Hausdorff distance between compact quantum metric spaces it is possible to define a metric on this family of spectral triples, and we show that the distance between a pair of spectral triples varies continuously with respect to the parameters. It turns out that a spectral triple associated to the unitarization of the algebra of compact operators is obtained under the limit - in this metric - for (s,1) -> (0, 1), while the basic spectral triple, associated to A, is obtained from this family under a sort of a dual limiting process for (1, t) -> (1, 0). We show that our constructions will provide families of spectral triples for the unitarized compacts and for the Podles sphere. In the case of the compacts we investigate to which extent our proposed spectral triple satisfies Connes' 7 axioms for noncommutative geometry.Comment: 40 pages. Addedd in ver. 2: Examples for the compacts and the Podle`s sphere plus comments on the relations to matricial quantum metrics. In ver.3 the word "deformations" in the original title has changed to "degenerations" and some illustrative remarks on this aspect are adde

    The Lattice and Simplex Structure of States on Pseudo Effect Algebras

    Full text link
    We study states, measures, and signed measures on pseudo effect algebras with some kind of the Riesz Decomposition Property, (RDP). We show that the set of all Jordan signed measures is always an Abelian Dedekind complete \ell-group. Therefore, the state space of the pseudo effect algebra with (RDP) is either empty or a nonempty Choquet simplex or even a Bauer simplex. This will allow represent states on pseudo effect algebras by standard integrals

    Entropy on Spin Factors

    Full text link
    Recently it has been demonstrated that the Shannon entropy or the von Neuman entropy are the only entropy functions that generate a local Bregman divergences as long as the state space has rank 3 or higher. In this paper we will study the properties of Bregman divergences for convex bodies of rank 2. The two most important convex bodies of rank 2 can be identified with the bit and the qubit. We demonstrate that if a convex body of rank 2 has a Bregman divergence that satisfies sufficiency then the convex body is spectral and if the Bregman divergence is monotone then the convex body has the shape of a ball. A ball can be represented as the state space of a spin factor, which is the most simple type of Jordan algebra. We also study the existence of recovery maps for Bregman divergences on spin factors. In general the convex bodies of rank 2 appear as faces of state spaces of higher rank. Therefore our results give strong restrictions on which convex bodies could be the state space of a physical system with a well-behaved entropy function.Comment: 30 pages, 6 figure

    The structure of the quantum mechanical state space and induced superselection rules

    Get PDF
    The role of superselection rules for the derivation of classical probability within quantum mechanics is investigated and examples of superselection rules induced by the environment are discussed.Comment: 11 pages, Standard Latex 2.0

    Smearing of Observables and Spectral Measures on Quantum Structures

    Full text link
    An observable on a quantum structure is any σ\sigma-homomorphism of quantum structures from the Borel σ\sigma-algebra of the real line into the quantum structure which is in our case a monotone σ\sigma-complete effect algebras with the Riesz Decomposition Property. We show that every observable is a smearing of a sharp observable which takes values from a Boolean σ\sigma-subalgebra of the effect algebra, and we prove that for every element of the effect algebra there is its spectral measure

    Information-theoretic postulates for quantum theory

    Full text link
    Why are the laws of physics formulated in terms of complex Hilbert spaces? Are there natural and consistent modifications of quantum theory that could be tested experimentally? This book chapter gives a self-contained and accessible summary of our paper [New J. Phys. 13, 063001, 2011] addressing these questions, presenting the main ideas, but dropping many technical details. We show that the formalism of quantum theory can be reconstructed from four natural postulates, which do not refer to the mathematical formalism, but only to the information-theoretic content of the physical theory. Our starting point is to assume that there exist physical events (such as measurement outcomes) that happen probabilistically, yielding the mathematical framework of "convex state spaces". Then, quantum theory can be reconstructed by assuming that (i) global states are determined by correlations between local measurements, (ii) systems that carry the same amount of information have equivalent state spaces, (iii) reversible time evolution can map every pure state to every other, and (iv) positivity of probabilities is the only restriction on the possible measurements.Comment: 17 pages, 3 figures. v3: some typos corrected and references updated. Summarizes the argumentation and results of arXiv:1004.1483. Contribution to the book "Quantum Theory: Informational Foundations and Foils", Springer Verlag (http://www.springer.com/us/book/9789401773027), 201

    Generalized compactness in linear spaces and its applications

    Full text link
    The class of subsets of locally convex spaces called μ\mu-compact sets is considered. This class contains all compact sets as well as several noncompact sets widely used in applications. It is shown that many results well known for compact sets can be generalized to μ\mu-compact sets. Several examples are considered. The main result of the paper is a generalization to μ\mu-compact convex sets of the Vesterstrom-O'Brien theorem showing equivalence of the particular properties of a compact convex set (s.t. openness of the mixture map, openness of the barycenter map and of its restriction to maximal measures, continuity of a convex hull of any continuous function, continuity of a convex hull of any concave continuous function). It is shown that the Vesterstrom-O'Brien theorem does not hold for pointwise μ\mu-compact convex sets defined by the slight relaxing of the μ\mu-compactness condition. Applications of the obtained results to quantum information theory are considered.Comment: 27 pages, the minor corrections have been mad

    Characterizing Operations Preserving Separability Measures via Linear Preserver Problems

    Full text link
    We use classical results from the theory of linear preserver problems to characterize operators that send the set of pure states with Schmidt rank no greater than k back into itself, extending known results characterizing operators that send separable pure states to separable pure states. We also provide a new proof of an analogous statement in the multipartite setting. We use these results to develop a bipartite version of a classical result about the structure of maps that preserve rank-1 operators and then characterize the isometries for two families of norms that have recently been studied in quantum information theory. We see in particular that for k at least 2 the operator norms induced by states with Schmidt rank k are invariant only under local unitaries, the swap operator and the transpose map. However, in the k = 1 case there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3 simplified and clarifie

    The Expectation Monad in Quantum Foundations

    Get PDF
    The expectation monad is introduced abstractly via two composable adjunctions, but concretely captures measures. It turns out to sit in between known monads: on the one hand the distribution and ultrafilter monad, and on the other hand the continuation monad. This expectation monad is used in two probabilistic analogues of fundamental results of Manes and Gelfand for the ultrafilter monad: algebras of the expectation monad are convex compact Hausdorff spaces, and are dually equivalent to so-called Banach effect algebras. These structures capture states and effects in quantum foundations, and also the duality between them. Moreover, the approach leads to a new re-formulation of Gleason's theorem, expressing that effects on a Hilbert space are free effect modules on projections, obtained via tensoring with the unit interval.Comment: In Proceedings QPL 2011, arXiv:1210.029
    corecore