23 research outputs found
Compact Measurement Station for Low Energy Proton Beams
A compact, remote controlled, cost efficient diagnostic station has been
developed to measure the charge, the profile and the emittance for low energy
proton beams. It has been installed and tested in the proton beam line of the
Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.Comment: 7 pages 2 column
Pulsed Beam Tests at the SANAEM RFQ Beamline
A proton beamline consisting of an inductively coupled plasma (ICP) source,
two solenoid magnets, two steerer magnets and a radio frequency quadrupole
(RFQ) is developed at the Turkish Atomic Energy Authority's (TAEA) Saraykoy
Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016,
the RFQ was installed in the beamline. The high power tests of the RF power
supply and the RF transmission line were done successfully. The high power RF
conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was
tested in two different conditions, CW and pulsed. The characterization of the
proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter.
Beam transverse emittance was measured in between the two solenoids of the
LEBT. The measured beam is then reconstructed at the entrance of the RFQ by
using computer simulations to determine the optimum solenoid currents for
acceptance matching of the beam. This paper will introduce the pulsed beam test
results at the SANAEM RFQ beamline. In addition, the high power RF conditioning
of the RFQ will be discussed.Comment: 6 pages, 6 figures. Proceedings of the International Particle
Accelerator Conference 2017 (IPAC'17), May 14-19, 2017, TUPAB015, p. 134
Project PROMETHEUS: Design and Construction of a Radio Frequency Quadrupole at TAEK
The PROMETHEUS Project is ongoing for the design and development of a 4-vane
radio frequency quadrupole (RFQ) together with its H+ ion source, a low energy
beam transport (LEBT) line and diagnostics section. The main goal of the
project is to achieve the acceleration of the low energy ions up to 1.5 MeV by
an RFQ (352 MHz) shorter than 2 meter. A plasma ion source is being developed
to produce a 20 keV, 1 mA H+ beam. Simulation results for ion source,
transmission and beam dynamics are presented together with analytical studies
performed with newly developed RFQ design code DEMIRCI. Simulation results
shows that a beam transmission 99% could be achieved at 1.7 m downstream
reaching an energy of 1.5 MeV. As the first phase an Aluminum RFQ prototype,
the so-called cold model, will be built for low power RF characterization. In
this contribution the status of the project, design considerations, simulation
results, the various diagnostics techniques and RFQ manufacturing issues are
discussed.Comment: 4 pages, 8 figures, Proceedings of the 2nd International Beam
Instrumentation Conference 2013 (IBIC'13), 16-19 Sep 2013, WEPC02, p. 65
Polishing of optical fibers using a CO2 laser
A new application of glass surface treatment is presented here. Fine polishing of optical fiber end core/cladding surface, is performed. A small power monomode longitudinal 10 W cw CO2 laser is used. A decrease of the roughness from about 5 microns to hundreds of nanometres was achieved The microstructure of the surfaces has been studied using atomic force microscopy. Applications of polished fiber surfaces are given