20 research outputs found

    Electric-field Manipulation of the Lande' g Tensor of Holes in In0.5Ga0.5As/GaAs Self-assembled Quantum Dots

    Full text link
    The effect of an electric field on spin precession in In0.5Ga0.5As/GaAs self-assembled quantum dots is calculated using multiband real-space envelope-function theory. The dependence of the Lande' g tensor on electric fields should permit high-frequency g tensor modulation resonance, as well as direct, nonresonant electric-field control of the hole spin. Subharmonic resonances have also been found in g tensor modulation resonance of the holes, due to the strong quadratic dependence of components of the hole g tensor on the electric field.Comment: 4 pages, 2 figure

    Total synthesis of polysaccharides by automated glycan assembly

    Get PDF
    Polysaccharides are the most abundant biopolymers on earth that serve various structural and modulatory functions. Pure, completely defined linear and branched polysaccharides are essential to understand carbohydrate structure and function. Polysaccharide isolation provides heterogeneous mixtures, while heroic efforts were required to complete chemical and/or enzymatic syntheses of polysaccharides as long 92-mers. Here, we show that automated glycan assembly (AGA) enables access to a 100-mer polysaccharide via a 201-step synthesis within 188 h. Convergent block coupling of 30- and 31-mer oligosaccharide fragments, prepared by AGA, yielded a multiple-branched 151-mer polymannoside. Quick access to polysaccharides provides the basis for future material science applications of carbohydrates

    NMR relaxation and rattling phonons in the type-I Ba

    No full text

    Microwave-assisted Automated Glycan Assembly

    No full text
    Automated synthesis of DNA, RNA, and peptides provides quickly and reliably important tools for biomedical research. Automated glycan assembly (AGA) is significantly more challenging as highly branched carbohydrates require strict regio- and stereocontrol during synthesis. A new AGA synthesizer enables rapid temperature adjustment from -40 °C to +100 °C to control glycosylations at low temperature and accelerates capping, protecting group removal, and glycan modifications by using elevated temperatures. Thereby, the temporary protecting group portfolio is extended from two to four orthogonal groups that give rise to oligosaccharides with up to four branches. In addition, sulfated glycans and unprotected glycans can be prepared. The new design reduces the typical coupling cycles from 100 min to 60 min while expanding the range of accessible glycans. The instrument drastically shorten and generalizes the synthesis of carbohydrates for use in biomedical and material science.<br /

    Microwave-Assisted Automated Glycan Assembly

    Get PDF
    Automated synthesis of DNA, RNA, and peptides provides quickly and reliably important tools for biomedical research. Automated glycan assembly (AGA) is significantly more challenging, as highly branched carbohydrates require strict regio- and stereocontrol during synthesis. A new AGA synthesizer enables rapid temperature adjustment from −40 to +100 °C to control glycosylations at low temperature and accelerates capping, protecting group removal, and glycan modifications using elevated temperatures. Thereby, the temporary protecting group portfolio is extended from two to four orthogonal groups that give rise to oligosaccharides with up to four branches. In addition, sulfated glycans and unprotected glycans can be prepared. The new design reduces the typical coupling cycles from 100 to 60 min while expanding the range of accessible glycans. The instrument drastically shortens and generalizes the synthesis of carbohydrates for use in biomedical and material science
    corecore