140 research outputs found

    STUDY OF METHANE CONCENTRATION VARIABILITY IN THE SURFACE LAYER OF THE SEA OF JAPAN IN THE CONTEXT OF SEISMIC EVENTS (BASED ON THE RESULTS OF EXPEDITION STUDIES IN 2017–2018)

    Get PDF
    A spatial distribution of methane dissolved in sea water is a critical but poorly understood factor in the context of seismic activity. Based on the results of the RV AKADEMIK OPARIN integrated geological-geophysical expedition (September 21 – October 31, 2017), this paper deals with the regularities of methane concentration variability in the surface layer of the Sea of Japan: the average growth and the average growth period were 70 % and 10 h, respectively, after each earthquake whereas a decrease in methane concentration in the sea water was 10–30 % 2–4 h before a seismic event. A decrease in methane concentration occurs irrespectively of the depth of an earthquake. The results obtained show good agreement with the published data and gaseous-geochemical monitoring materials, thus making it possible to associate seismic-related gaseous-geochemical regime not only with gas-saturated sediments but also with the water column of the Japan Basin (Sea of Japan)

    Rheology of liquid crystalline phases of alkyloxybenzylidene toluidines

    Get PDF
    A unique viscometer of the CS rheometer viscometer class designed at the Kazan State University of Technology is used to measure viscosities of two p-n-alkyloxybenzylidene-p-toluidines in the entire temperature range of the liquid crystalline state and transition into an isotropic liquid. The measured shear stresses and flow rates are used to calculate shear rates and plot flow and viscosity curves. The liquid crystalline phase and isotropic liquid are demonstrated to possess Newtonian viscosity, whose viscous flow activation parameters are calculated in the temperature range under study. The results are discussed from the standpoint of intermolecular interactions and structural details of the liquid crystalline phase. Β© 2010 Pleiades Publishing, Ltd

    A viscometric study of the liquid crystalline phase of alkyloxybenzoic acids

    Get PDF
    The viscosities of three benzoic acid derivatives (p-n-heptyloxy-, p-n-decyloxy-, and p-n-dodecyloxy-) were measured on a unique viscometer of the class of CS-rheometer-viscometers with controlled shear stress over the whole temperature range of the liquid crystalline state. Shear rates were calculated and flow and viscosity curves constructed from the experimental shear stress values taking into account the Rabinovich-Moony correction. The smectic and nematic phases were characterized by non-Newton and Newton viscosities, respectively, in all the samples studied. The activation parameters of viscous flow were calculated for Newton viscosity. The results are discussed in terms of intermolecular interactions and structural peculiarities of liquid crystalline phases. Β© 2009 Pleiades Publishing, Ltd

    ДиэлСктричСскиС свойства систСмы: 4-Π½-пСнтилоксибСнзойная кислота–N-(4-Π½-бутилоксибСнзилидСн)-4’-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½

    Get PDF
    Objectives. Our aim was to study the dielectric properties of the 4-n-pentyloxybenzoic acid– N-(4-n-butyloxybenzylidene)-4’-methylaniline system and reveal how different concentrations of N-(4-n-butyloxybenzylidene)-4’-methylaniline additives affect the dielectric properties of 4-n-pentyloxybenzoic acid.Methods. System properties were investigated using polarization thermomicroscopy and dielcometry.Results. We found that dielectric anisotropy changes its sign from positive to negative at the transition temperature of the high-temperature nematic subphase to the low-temperature one. The anisotropy of the dielectric constant of N-4-n-butoxybenzylidene-4’-methylaniline has a positive value and increases as to the system approaches the crystalline phase. The crystal structure of the 4-n-pentyloxybenzoic acid contains dimers formed by two independent molecules due to a pair of hydrogen bonds. The crystal structure of N-(4-n-butoxybenzylidene)-4’-methylaniline contains associates formed by orientational interactions of two independent molecules. 4-n-Pentyloxybenzoic acid dimers (270 nm) and associates of N-4-n-butoxybenzylidene-4’- methylaniline (250 nm) proved to have approximately the identical length. Considering the close length values of the structural units of both compounds and the dielectric anisotropy sign, we assume that the N-4-n-butoxybenzylidene-4’-methylaniline associates are incorporated into the supramolecular structure of the 4-n-pentyloxybenzoic acid. The specific electrical conductivity of the compounds under study lies between 10βˆ’7 and 10βˆ’12 Sβˆ™cmβˆ’1. The relationship between the specific electrical conductivity anisotropy and the system composition in the nematic phase at the identical reduced temperature, obtained between 100 and 1000 Hz is symbatic. However, the electrical conductivity anisotropy values of the system obtained at 1000 Hz are lower compared to those obtained at 100 Hz. At N-(4-n-butoxybenzylidene)-4’-methylaniline concentrations between 30 and 60 mol %, the electrical conductivity anisotropy values are higher than those of the individual component.Conclusions. A change in the sign of the dielectric constant anisotropy of the 4-n-pentyloxybenzoic acid during nematic subphase transitions was established. We showed that the system has the highest dielectric constant anisotropy value when components have an equal number of moles. Highest electrical conductivity anisotropy values are observed when the concentration of the N-4-n-butoxybenzylidene-4αΎ½-methylaniline system lies between 30 and 60 mol %. ЦСль. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ диэлСктричСскиС свойства систСмы: 4-Π½-пСнтилоксибСнзойная кислота–N-(4-Π½-бутилоксибСнзилидСн)-4’-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½. Π’Ρ‹ΡΠ²ΠΈΡ‚ΡŒ влияниС Π΄ΠΎΠ±Π°Π²ΠΎΠΊ N-(4-Π½-бутил­оксибСнзилидСн)-4’-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π½Π° диэлСктричСскиС свойства 4-Π½-пСнтилоксибСнзойной кислоты.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Бвойства систСмы исслСдовались ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ поляризационной тСрмомикроскопии ΠΈ Π΄ΠΈΡΠ»ΡŒΠΊΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° высокотСмпСратурной нСматичСской субфазы Π² Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΡƒΡŽ диэлСктричСская анизотропия мСняСт свой Π·Π½Π°ΠΊ с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Анизотропия диэлСктричСской проницаСмости N-4-Π½-бутоксибСнзилидСн-4’-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ значСния ΠΈ увСличиваСтся ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ приблиТСния ΠΊ Ρ„Π°Π·ΠΎΠ²ΠΎΠΌΡƒ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρƒ Π² ΠΊΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ„Π°Π·Ρƒ. Π’ кристалличСской структурС 4-Π½-пСнтилоксибСнзойной кислоты ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄ΠΈΠΌΠ΅Ρ€Ρ‹, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ двумя нСзависимыми ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ Π·Π° счСт ΠΏΠ°Ρ€Ρ‹ H-связСй. Π’ кристалличСской структурС N-(4-Π½-бутоксибСнзилидСн)-4’-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ассоциаты, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π·Π° счСт ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… взаимодСйствий Π΄Π²ΡƒΡ… нСзависимых ΠΌΠΎΠ»Π΅ΠΊΡƒΠ». ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Π±Π»ΠΈΠ·ΠΎΡΡ‚ΡŒ Π΄Π»ΠΈΠ½ Π΄ΠΈΠΌΠ΅Ρ€ΠΎΠ² 4-Π½-пСнтилоксибСнзойной кислоты (270 Π½ΠΌ) ΠΈ ассоциатов N-4-Π½-бутоксибСнзилидСн-4’-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° (250 Π½ΠΌ). Учитывая Π±Π»ΠΈΠ·ΠΎΡΡ‚ΡŒ Π΄Π»ΠΈΠ½ структурных Π΅Π΄ΠΈΠ½ΠΈΡ† ΠΎΠ±ΠΎΠΈΡ… соСдинСний ΠΈ Π·Π½Π°ΠΊ диэлСктричСской Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ассоциаты N-4-Π½-бутоксибСнзилидСн-4’-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² Π½Π°Π΄ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ структуру 4-Π½-пСнтилоксибСнзойной кислоты. УдСльная ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ исслСдуСмых соСдинСний Π»Π΅ΠΆΠΈΡ‚ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 10βˆ’7–10βˆ’12 Π‘ΠΌΒ·ΡΠΌβˆ’1. Зависимости Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ элСктропроводности ΠΎΡ‚ состава систСмы для нСматичСской Ρ„Π°Π·Ρ‹ ΠΏΡ€ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π° частотах 100 ΠΈ 1000 Π“Ρ†, ΠΈΠΌΠ΅ΡŽΡ‚ симбатный Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€. Однако Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ элСктропроводности систСмы, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ Π½Π° частотС 1000 Π“Ρ†, Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π½Π° частотС 100 Π“Ρ†. ΠŸΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ N-(4-Π½-бутоксибСнзилидСн)-4’-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° ΠΎΡ‚ 30 Π΄ΠΎ 60 ΠΌΠΎΠ». % значСния Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ элСктропроводности систСмы Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ для ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. УстановлСна смСна Π·Π½Π°ΠΊΠ° Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ диэлСктричСской проницаСмости 4-Π½-пСнтилоксибСнзойной кислоты ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΌΠ΅ΠΆΠ΄Ρƒ нСматичСскими субфазами. Показано, Ρ‡Ρ‚ΠΎ самоС высокоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ диэлСктричСской проницаСмости систСма ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€ΠΈ эквимолярном ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ². НаибольшиС значСния Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ элСктропроводности Π½Π°Π±Π»ΡŽΠ΄Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ содСрТании Π² систСмС ΠΎΡ‚ 30 Π΄ΠΎ 60 ΠΌΠΎΠ». % N-(4-Π½-бутоксибСнзилидСн)-4’-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π°.

    Resonance Raman Scattering in TlGaSe 2

    Get PDF
    The resonance Raman scattering for geometries Y(YX)Z and Y(ZX)Z at temperature 10 K and infrared reflection spectra in Eβˆ₯a and Eβˆ₯b polarizations at 300 K were investigated. The number of Aa (Ba) and Au (Bu) symmetry vibrational modes observed experimentally and calculated theoretically agree better in this case than when TlGa2Se4 crystals belong to D2h symmetry group. The emission of resonance Raman scattering and excitonic levels luminescence spectra overlap. The lines in resonance Raman spectra were identified as a combination of optical phonons in Brillouin zone center

    ΠžΡ†Π΅Π½ΠΊΠ° биоэнСргСтики сокращСния ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° Π² условиях мСханичСской ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ кровообращСния

    Get PDF
    Aim: to develop a new modified index for the assessment of bioenergy heart in conditions of heart failure. To assess the energy of the heart when using systems to bypass the left ventricle of the heart using non-pulsed flow pumps. To consider the fundamental advantage of non-pulsating flow pumps with the generation of a pulsating flow in the cardio-synchronized copulsation mode over the counterpulsation mode.ЦСль: Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹ΠΉ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ индСкс для ΠΎΡ†Π΅Π½ΠΊΠΈ биоэнСргСтики сокращСния сСрдца Π² условиях сСрдСчной нСдостаточности ΠΏΡ€ΠΈ мСханичСской ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ кровообращСния. ΠŸΡ€ΠΎΠ²Π΅ΡΡ‚ΠΈ ΠΎΡ†Π΅Π½ΠΊΡƒ биоэнСргСтики сСрдца ΠΏΡ€ΠΈ использовании систСм ΠΎΠ±Ρ…ΠΎΠ΄Π° Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ° сСрдца с использованиСм насосов Π½Π΅ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°. Π Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ прСимущСство насосов Π½Π΅ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° с Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ кардиосинхронизированной ΡΠΎΠΏΡƒΠ»ΡŒΡΠ°Ρ†ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄ Ρ€Π΅ΠΆΠΈΠΌΠΎΠΌ ΠΊΠΎΠ½Ρ‚Ρ€ΠΏΡƒΠ»ΡŒΡΠ°Ρ†ΠΈΠΈ

    Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π• Π˜Π—ΠœΠ•ΠΠ§Π˜Π’ΠžΠ‘Π’Π˜ ΠšΠžΠΠ¦Π•ΠΠ’Π ΠΠ¦Π˜Π™ ΠœΠ•Π’ΠΠΠ Π’ ΠŸΠžΠ’Π•Π Π₯НОБВНОМ Π‘Π›ΠžΠ• Π’ΠžΠ” Π―ΠŸΠžΠΠ‘ΠšΠžΠ“Πž МОРЯ Π’ ΠšΠžΠΠ’Π•ΠšΠ‘Π’Π• Π‘Π•Π™Π‘ΠœΠ˜Π§Π•Π‘ΠšΠ˜Π₯ Π‘ΠžΠ‘Π«Π’Π˜Π™ (ПО Π Π•Π—Π£Π›Π¬Π’ΠΠ’ΠΠœ Π­ΠšΠ‘ΠŸΠ•Π”Π˜Π¦Π˜ΠžΠΠΠ«Π₯ Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π™ 2017–2018 Π³Π³.)

    Get PDF
    A spatial distribution of methane dissolved in sea water is a critical but poorly understood factor in the context of seismic activity. Based on the results of the RV AKADEMIK OPARIN integrated geological-geophysical expedition (September 21 – October 31, 2017), this paper deals with the regularities of methane concentration variability in the surface layer of the Sea of Japan: the average growth and the average growth period were 70 % and 10 h, respectively, after each earthquake whereas a decrease in methane concentration in the sea water was 10–30 % 2–4 h before a seismic event. A decrease in methane concentration occurs irrespectively of the depth of an earthquake. The results obtained show good agreement with the published data and gaseous-geochemical monitoring materials, thus making it possible to associate seismic-related gaseous-geochemical regime not only with gas-saturated sediments but also with the water column of the Japan Basin (Sea of Japan).ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΠΎΠ΅ распрСдСлСниС ΠΌΠ΅Ρ‚Π°Π½Π°, растворСнного Π² морской Π²ΠΎΠ΄Π΅, Π²ΠΎ взаимосвязи с сСйсмичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π°ΠΆΠ½ΡƒΡŽ, Π½ΠΎ нСдостаточно ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² комплСксной Π³Π΅ΠΎΠ»ΠΎΠ³ΠΎ-гСофизичСской экспСдиции Π½Π° НИБ «АкадСмик ΠžΠΏΠ°Ρ€ΠΈΠ½Β» (21 сСнтября – 31 октября 2017 Π³.) установлСна Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ измСнчивости ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚Π°Π½Π° Π² повСрхностном слоС морской Π²ΠΎΠ΄Ρ‹: послС ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ зСмлСтрясСния срСдний ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ роста составил 70 %, срСдний ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ роста 10 Ρ‡; ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ уровня ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚Π°Π½Π° Π² морской Π²ΠΎΠ΄Π΅ достигало 10–30 % Π·Π° 2–4 Ρ‡ Π΄ΠΎ сСйсмичСского события. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ ΠΌΠ΅Ρ‚Π°Π½Π° происходит нСзависимо ΠΎΡ‚ Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ зСмлСтрясСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌΠΈ газогСохимичСского ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΎΠ±ΡΡƒΠΆΠ΄Π°Ρ‚ΡŒ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ сСйсмозависимого газогСохимичСского Ρ€Π΅ΠΆΠΈΠΌΠ° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ газонасыщСнных осадков, Π½ΠΎ ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈ Π²ΠΎΠ΄ Японского моря

    Geochemical features of Sakhalin Island mud volcanoes

    Get PDF
    The study, based on a complex geochemical research, found that the composition of the most chemical elements in mud breccia from the Yuzhno-Sakhalinsky (YSMV) and Pugachevsky (PMV) mud volcanoes (Sakhalin Island), the unique phenomena of endogenous defluidization in the Hokkaido-Sakhalin fold system (alpine-type folding), are comparable to Clark (C) contents of these elements (0.8-1.2 Γ—C). For Na, Li, Zn andSn, the ratio between the elemental contentsand their Clarke values (Csample/Clark value) vary from 1.4 to 5.2 xC. But the increased contents of Na and Li are due to the ascending endogenous fluid revealed. Study of the mud breccia chemical composition changes in different explosive activity of YSMV under the seismic activity variationsallowed to establish that, when the mud-volcanic gryphonsare activated against the background of increase in the temperature of the water-mud mixture and the emission of spontaneous gases, the contents of a number of elements (iron, calcium, manganese, rare earth elements, etc.) are decreased. This is explained by the formation of soluble hydrocarbonate complexes. Daginskiegasgeothermal system (DGHS) trace elements depletedooze samples were compared with YSMV and PMVsamples and exposedthat thehigh ratios of Csample /Clarke values for the majority of elements do not exceed 0.6 Γ— C.Ooze samples from DGHS having higher elemental contents than Clark contents were observed only for Cd content (2.2-3.4 Γ—C) and Pb (0.7-1.5 Γ—C). Analysis of diatom flora on the DGHS site indicates the existence of an active fluid dynamic system that drains oil and gas bearing complexes. The factors determining the "weighting" of the methane carbon isotope composition in the southern part of Sakhalin Island are the increased seismic activity of deep-seated faults, as well as the presence of intrusions (diabase) and metamorphically altered rocks.References Aliyev A.A., Guliyev I.S., Rakhmanov R.R., 2009. Catalog of eruptions of Azerbaijan mud volcanoes (1810-2007). Baku Nafta-Press, 109p. Astakhov A.S., et al., 2002. Defluitization process dynamic of the Central Sakhalin fault at seismic activization (by monitoring results of the Yuzhno-Sakhalinsky mud volcano in July - August 2001) DAN 2002, 386(2), 223-228. Decisions of operational interdepartmental regional stratigraphical meetings on the Paleogene and Neogene of east regions of Russia-Kamchatka, Koryak Upland, Sakhalin and Kuril Islands, 1998. An explanatory note to stratigraphical schemes. Responsible editor Gladenkov Y.B. Moscow GEOS, 147p. Diatomic algae of the USSR (fossil and modern), 1974. Leningrad Nauka, 1(1), 404p. Dubinin A.V., 2006. Geochemistry of rare-earth elements in the ocean. Moscow Nauka, 360p. Ershov V.V., Shakirov R.B., Obzhirov A.I., 2011. Isotope and geochemical characteristics of the Yuzhno-Sakhalinsky mud volcano free gases and their connection with regional seismicity. DAN, 440(2), 256-261. Fedorov Y.N., et al., 2012. Crude oil microelement characteristic of Vogulkinsky and Tyumen basins oil and gas area: comparison. Lithosphere, 2, 141-151. Geology of the USSR, 33. Sakhalin Island/Under the edited by Sidorenko A.V. Moscow Nedra, 1970, 464p. Grigoriev N. A., 2008. About clark content of chemical elements in the top part of continental crust. Lithosphere 1, 61-71. Thesis: 11.00.00. Yuzhno-Sakhalinsk, IMGG FEB RAS, 244p. Hasle G.R., Syvertsen E.E., 1996. Marine diatoms. Identifying Marine Phytoplankton. San Diego, Academic Press, 5-385. Horita J., 2001. Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. Geochimica et Cosmochimca Acta, 65, 1907-1919. Kholodov V.N., 2002. Mud volcanoes: distribution regularities and genesis. Lithology and Mineral Resources, 3, 227-22001.41. Kopf A.J., 2002. Significance of mud volcanism. Rev. Geophys, 40(2), 2-1-2-52. Liu Chia-Chuan, et al., 2013. The geochemical characteristics of the mud liquids in the Wushanting and Hsiaokunshui Mud Volcano region in southern Taiwan: Implications of humic substances for binding and mobilization of arsenic. Journal of Geochemical Exploration, 128, 62-71. Lobodenko I.Y., 2010. Holocenic tectonic deformations (paleoseismodislocations) in zones of the Hokkaido-Sakhalin and Central Sakhalin faults. Candidate of geological and mineralogical science thesis. Moscow, 22p. Melnikov O.A., 1987. Structure and geodynamics of the Hokkaido-Sakhalin folded region. Moscow Nauka, 93p. Melnikov O.A., 2011. About dynamics and nature of Pugachevsky group the gaswaterclastic ("mud") volcanoes on Sakhalin according to visual observations and an orohydrography. Volcanology and Seismology, 6, 47-59. Melnikov O.A., Ershov V.V., Kim Chong Un, etc., 2008.Β  About the mud spring activity dynamic of the gaswaterclastic ("mud") volcanoes and its connection with seismicity on the example of the Yuzhno-Sakhalinsky volcano (Sakhalin Island). Pacific Geology 27(5), 25-41. Melnikov O.A., Iliev A.Y., 1989. About new manifestations of mud volcanism on Sakhalin Island. Pacific geology 3, 42-48. Milkov, A.V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology 167, 29-42. Oreshkin V.N., Gordeev V.V., 1983. Geochemistry of cadmium and plumbum in suspension of the rivers of Black, Azov and Caspian Sea areas. Geochemistry, 4, 603-613. Petelin V.P., 1957. Mineralogy of sand-aleurite fractions in the Sea of Okhotsk marine sediments. Proceedings of Oceanology Institute of USSR Academy of Sciences, XXII. Prasolov E.M., 1990. Isotope geochemistry and origin of natural gases. St. Petersburg: Nedra, 283p. Shakirov R.B., 2016. Gasgeochemical fields of the marginal seas on the Far Eastern Region: distribution, origin, relations to the geological structures, gashydrates and seismo-tectonics. Dissertation of Doctor of Geological and Mineralogical Sciences (Dr.Sci.). POI FEB RAS, Vladivostok 459p. (In Russian). Shakirov R.B., Syrbu N.C., Obzhirov A.I., 2012. Isotope and gas-geochemical features of methane and carbon dioxide distribution on Sakhalin Island and adjacent shelf of the Okhotsk Sea. Bulletin of KRAESC Earth Sciences, 2(20), 100-113. Shnyukov E.V., et al., 1992. Mud volcanism of the Kerch and Tamansky region. Kiev, Naukova dumka, 200p. Siryk I.M., 1968. Oil and gas content of the east slopes of the West Sakhalin mountains. Moscow: Nauka, 8-14. Sorochinskaya A.V., et al., 2008. Geochemical and mineralogical features of mud volcanoes of Sakhalin Island. Bulletin of FEB RAS, 4, 58-65. Veselov О.V., Soinov V.V., 1997. Tektonosphere geodynamics of conjaction zone of the Pacific Ocean with Eurasia. Yuzhno Sakhalinsk: IMGG FEB RAS 4, 153-176. Veselov O.V., Volgin P.F., Lutaya L.M., 2012.Β  Structure of the Pugachevsky mud-volcano sedimentary cover (Sakhalin Island) by geophysical modeling data. Pacific Geology, 31(6), 4-15. Vinogradov A.P., 1962. Average contents of chemical elements in the main types the igneous rocks. Geochemistry, 7, 555-571. Yakubov A.A., et al., 1980. Mud volcanism of the Soviet Union and its connection with oil-and-gas content. Baku, 165p. Zharov A.E., Mitrofanova L.I., Tuzov V.P., 2013. Stratigraphy of Cainozoic sedoiments of the Northern Sakhalin shelf. Stratigraphy, Geological correlation 21(5), 72-93

    ΠžΡ†Π΅Π½ΠΊΠ° эффСктивности Π½ΠΎΠ²ΠΎΠΉ систСмы Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π² Ρ€ΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… насосах Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ кровообращСния. ИсслСдованиС Π½Π° матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ

    Get PDF
    Objective: to study the effect of a pulsatile flow-generation (PFG) device on the basic hemodynamic parameters of the circulatory system using a mathematical model.Results. Modelling and simulation showed that the use of PFG significantly (76%) increases aortic pulse pressure. The proposed mathematical model adequately describes the dynamics of the circulatory system and metabolism (oxygen debt) on physical activity in normal conditions and heart failure, and the use of non-pulsatile and pulsatile circulatory-assist systems. The mathematical model also shows that the use of PFG device blocks the development of rarefaction in the left ventricular cavity associated with a mismatch of blood inflow and outflow in diastolic phase when there is need to increase systemic blood flow by increasing the rotary pump speed.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: Π½Π° матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ влияниС устройства Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° (Π“ΠŸΠŸ) Π½Π° основныС гСмодинамичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ систСмы кровообращСния.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ модСлирования ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ (76%) ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡƒΠ»ΡŒΡΠΎΠ²ΠΎΠ³ΠΎ давлСния Π² Π°ΠΎΡ€Ρ‚Π΅ ΠΏΡ€ΠΈ использовании Π“ΠŸΠŸ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ матСматичСская модСль Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎ описываСт Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ систСмы кровообращСния ΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° (кислородный Π΄ΠΎΠ»Π³) Π½Π° Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ Π² условиях Π½ΠΎΡ€ΠΌΡ‹ ΠΈ сСрдСчной нСдостаточности ΠΈ примСнСния Π½Π΅ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΡŽΡˆΠ΅ΠΉ ΠΈ ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ систСмы Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ кровообращСния. На матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ устройства Π“ΠŸΠŸ Π±Π»ΠΎΠΊΠΈΡ€ΡƒΠ΅Ρ‚ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ разрСТСния Π² полости Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ°, связанного с нСсоотвСтствиСм ΠΏΡ€ΠΈΡ‚ΠΎΠΊΠ° ΠΈ ΠΎΡ‚Ρ‚ΠΎΠΊΠ° ΠΊΡ€ΠΎΠ²ΠΈ Π² диастоличСской Ρ„Π°Π·Π΅, ΠΏΡ€ΠΈ нСобходимости увСличСния систСмного ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ° Π·Π° счСт ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ скорости Ρ€ΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ насоса
    • …
    corecore