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The resonance Raman scattering for geometries 𝑌(𝑌𝑋)𝑍 and 𝑌(𝑍𝑋)𝑍 at temperature 10 K and infrared reflection spectra in 𝐸 ‖ 𝑎
and 𝐸 ‖ 𝑏 polarizations at 300K were investigated. The number of 𝐴𝑎 (𝐵𝑎) and 𝐴𝑢 (𝐵𝑢) symmetry vibrational modes observed
experimentally and calculated theoretically agree better in this case than when TlGa2Se4 crystals belong to 𝐷2ℎ symmetry group.
The emission of resonance Raman scattering and excitonic levels luminescence spectra overlap. The lines in resonance Raman
spectra were identified as a combination of optical phonons in Brillouin zone center.

1. Introduction

TlGaSe2 crystals are triple thallium chalcogenides with a
layered structure [1, 2]. One of these crystals features is
the strong anisotropy of physical characteristics due to the
specificity of the crystals lattice [1–3]. Optical spectra in the
absorption edge region [4–11] and resonance Raman scatter-
ing for different geometries and temperatures (77–400K) [12]
were investigated in TlGaSe2 crystals. Reflection spectra for
the 50–4000 cm−1 region were studied and polar vibrational
modes LO and TO and their parameters were determined.
Such crystals had an effect of switching of current-voltage
and acoustooptic characteristics [13–15]. There are a lot of
materials dedicated to the investigations of these materi-
als (see [4–16] and the references therein). But resonance
Raman scattering in TlGaSe2 crystals has not been investigat-
ed.

2. Experimental Methods

Raman scattering spectra of TlGaSe2 crystals were measured
on double high-aperture spectrometers DFS-32 with linear
dispersion of 5 Å/mm and relative aperture of 1 : 5 and
resonance Raman scattering spectra on spectrometer SDL-
1 with dispersion of 7 Å/mm and relative aperture of 1 : 2.
The photomultiplier working in the photon counting regime

was used as a detector. Resonance Raman spectra had an
accuracy of ±0.5meV. Reflection spectra in 𝐸 ‖ 𝑎 and 𝐸 ‖
𝑏 polarizations in the range 50–400 cm−1 were measured
on a vacuum spectrometer KSDI-82 using an acoustooptical
receiverwith an accuracy of±1 cm−1. Cleft crystals of TlGaSe2
with different thicknesses mounted on a cold finger of a
closed-circuit helium cryostat LTS-22C 330 optical cryogenic
systemwere used in themeasurements.TheRaman scattering
was excited by 6328 Å line of a He-Ne laser. The resonance
Raman scattering was excited by lines 4579 Å and 5145 Å of
an Ar+ laser.

3. Experimental Results and Discussions

According to the crystallographic data, the TlGaSe2 structure
is described by the space group 𝐶2/𝑐 (𝐶2ℎ

6). The unit cell
contains 8 formula units of TlGaSe2. The main motive of the
structure is formed by tetrahedral polyhedrons of Ga4Se10,
consisting of 4 tetrahedrons of GaSe4. These tetrahedrons
have common atoms of selenium on the tops of the octa-
hedron [1–3]. These tetrahedral polyhedrons have common
vertices of 4 selenium atoms and take up layered positions
perpendicular to the 𝑐 axis. The layers are rotated to each
other at 90∘. The edges of polyhedrons lie in the 𝑥𝑦 plain
and are situated along the diagonal of the base square. Thus,
the TlGaSe2 compound has a monoclinic pseudotetragonal
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Figure 1: Raman scattering of TlGaSe2 crystals.

structure with the following parameters: 𝑎 = 𝑏 = 10.75 Å,
𝑐 = 15.56 Å, and 𝛽 = 100.0∘. The distances between Tl-
Se, Se-Se, and Tl-Tl are equal to 3.45 Å, 3.92 Å, and 3.42 Å,
respectively. This distance corresponds to the sum of ionic
radiuses Tl1-Se (3.38 Å) [1–3].

The next vibrational modes should be observed in Bril-
louin zone center of the above-mentioned crystals:

Γ = (𝐴𝑢 + 2𝐵𝑢)𝑎𝑐 + 23𝐴𝑔 + 25𝐵𝑔 + 22𝐴𝑢 + 23𝐵𝑢. (1)

The phonons of 𝐴𝑔 and 𝐵𝑔 symmetry should be observed in
Raman spectra and𝐴𝑢 and𝐵𝑢 in IR reflection spectra in𝐸 ‖ 𝑎
and 𝐸 ‖ 𝑏 polarizations, respectively. The scattering tensors
are next:

𝐴𝑔 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎 𝑑 0

𝑑 𝑏 0

0 0 𝑐

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐵𝑔 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 0 𝑒

0 0 𝑓

𝑒 𝑓 0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(2)

Figure 1 shows the Raman scattering of TlGaSe2 crystals
measured at a temperature of 10 K and in 𝑋(𝑍𝑌)𝑍 and
𝑍(𝑌𝑋)𝑍 geometries. The structure of vibrational modes
depends on polarization. It was reported in [12] that 8 and
6 modes of 𝐴𝑔 symmetry were recognized at temperatures
of 77K and 300K, respectively. One can see from the
analysis of the above-mentioned spectra that, even at 10 K,
the number of experimentally observed modes is smaller
than the number of modes theoretically predicted by group-
theoretic calculations. 14 modes of 𝐵𝑔 symmetry and 10
modes of 𝐴𝑔 symmetry were observed. Hence, the amount
of the observed vibrational modes as in IR reflection spectra
as in Raman spectra is lower than expected according to the
theory.

The most intensive modes in reflection spectra for both
polarizations are high-frequency modes (see Figure 2). Thus,
in reflection spectra of TlGaSe2 crystals, 23 and 22 modes are
expected in the region of single-phonons vibrational modes,
but only 5 modes and 8 modes have been observed in 𝐸 ‖ 𝑎
and 𝐸 ‖ 𝑏 polarizations, respectively (Figure 2).

Compounds TlGaS2 and TlGaSe2 belong to thallium
based crystals.This group of crystals (TlMX2, where M = Ga,
In and X = S, Se, Te) has a family likeness of optical spectra
and energy band structures. The analogs are observed in all
well-studied compounds (Si, Ge, 𝐴III𝐵V and 𝐴II𝐵VI). The
results of band structure calculations for TlMX2 crystals
have a common character and reflect only its main features.
This leads to proximity of the above-mentioned compounds
lattices. Crystal structures of TlGaS2 and TlGaSe2 com-
pounds are different only in the replacement of S atoms by
Se atoms in the crystal lattice. The structure of the layer
TlGaS2 in [12] is symmetrized by an insignificant shift of
atoms inside the layer to achieve a tetragonal structure with
𝐷2𝑑
5 space group.The hypothetic structure with space group
𝐷2ℎ
15 with unit cell comprising two layers was achieved

by the authors of [12], introducing the interlayer inversion
operation with preserving the elements of layer symmetry.
Similarly, we analyze and investigate TlGaSe2 crystals. Using
the same assumption, one can obtain a better agreement in
the number of theoretically predicted and experimentally
measured vibration modes in the case of TlGaSe2 crystals.
Based on the analysis of polarization dependences of Raman
and IR reflection spectra, the TlGaS2 and TlGaSe2 crystals
can be attributed to symmetry group𝐷2ℎ or𝐷4ℎ.

The emission lines (1–20) of resonance Raman scatter-
ing in the region of excitonic resonances at excitation of
514.5 nm laser line of TlGaSe2 crystals at a temperature of
10 K and 𝑍(𝑌𝑌)𝑍 geometry were observed (see Figure 3 and
Table 1). These lines (1–20) skirt the broad emission lines
at 2.17–2.19 eV, 2.30 eV, and 2.39 eV in resonance Raman
scattering spectra of TlGaSe2 crystals. These broad lines are
caused by emission of ground states 𝐴, 𝐵, and 𝐶 excitons.
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Figure 2: Reflection spectra of TlGaSe2 crystals in 𝐸 ‖ 𝑎 (a) and 𝐸 ‖ 𝑏 (b) polarizations.

Table 1: Emission lines of resonance Raman scattering in TlGaSe2 crystals measured at 10 K and excited by 514.5 nmAr+ laser line in𝑍(𝑌𝑌)𝑍
geometry and possible phonons combinations (symmetry, modes, and frequencies) responsible for resonance scattering.

Line, 𝑛 Wavenumber
shift, cm−1

Assignment

1 120 𝐴𝑢(LO), 121;
2 134 𝐵𝑢(LO), 67 + 𝐵𝑢(LO), 67;
3 140 𝐴𝑢(LO), 140;
4 151 𝐵𝑢(LO), 67 + 𝐵𝑢(LO), 84;
5 163 𝐴𝑢(LO), 73 + 𝐴𝑢(LO), 91;
6 187 𝐴𝑢(LO), 106 + 𝐵𝑢(LO), 84; 𝐵𝑢(LO), 114 + 𝐴𝑢(LO), 73;
7 238 𝐵𝑢(LO), 114 + 𝐴𝑢(LO), 121;
8 313 𝐴𝑢 (LO), 240 + 𝐴𝑢(LO), 73;
9 436 2𝐴𝑢(LO), 106 + 𝐵𝑢(LO), 224;
10 480 𝐴𝑢(LO), 240 + 𝐴𝑢(LO), 240;
12 590 𝐵𝑢(LO), 260 + 𝐴𝑢(LO), 91 + 𝐴𝑢(LO), 240;
13 634 𝐵𝑢(LO), 260 + 𝐵𝑢(LO), 260 + 𝐵𝑢(LO), 114;
14 732 𝐴𝑢(LO), 240 + 𝐵𝑢(LO), 224 + 𝐴𝑢(LO), 268;
15 960 𝐴𝑢(LO), 240 + 𝐴𝑢(LO), 240 + 𝐴𝑢(LO), 240 + 𝐴𝑢(LO), 240;
16 999 𝐴𝑢(LO), 240 + 𝐴𝑢(LO), 240 + 𝐵𝑢(LO), 260 + 𝐵𝑢(LO), 260;
17 1075 𝐴𝑢(L), 73 + 𝐴𝑢(LO), 240 + 𝐴𝑢(LO), 240 + 𝐵𝑢(LO), 260 + 𝐵𝑢(LO), 260;

Figure 3 shows resonance Raman scattering spectra in
TlGaSe2 crystals measured at a temperature of 10 K in
𝑍(𝑌𝑌)𝑍 geometry and excited by 496.5 nm Ar+ laser line.
The narrow lines (1–17) that skirted the line at 2.4 eV were
observed in these spectra. The observed lines of resonance
Raman scattering and possible combination of phonons
responsible for these emission lines are presented in Tables
1 and 2. At high frequencies, these data do not include all
possible combinations of phonons responsible for lines of
resonance Raman scattering.

4. Conclusions

The resonance Raman scattering in 𝑌(𝑌𝑋)𝑍 and 𝑌(𝑍𝑋)𝑍
geometries excited by He-Ne laser was investigated at a
temperature of 10 K. The energies of phonons with 𝐴𝑔 and
𝐵𝑔 symmetries were determined. It was shown that the
amount of modes in Raman scattering and IR reflection
spectra measured at 10 K is half the expected according to
group theory calculations. The experimental and theoretical
results coincide if the crystal is described by symmetry
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Figure 3: Resonance Raman scattering in TlGaSe2 crystals measured at a temperature of 10 K and excited by lines 514.5 nm (a) and 496.5 nm
(b) of an Ar+ laser in 𝑍(𝑌𝑌)𝑍 geometry.

Table 2: Emission lines of resonance Raman scattering in TlGaSe2 crystalsmeasured at 10 K and excited by 496.5 nmAr+ laser line in𝑍(𝑌𝑌)𝑍
geometry and possible phonons combinations (symmetry, modes, and frequencies) responsible for resonance scattering.

Line, 𝑛 Wavenumber
shift, cm−1

Assignment

1 66 𝐵𝑢(LO), 67;
2 75 𝐴𝑢(LO), 73;
3 85 𝐵𝑢(LO), 84;
4 96 𝐴𝑢(LO), 91;
5 117 𝐴𝑢(LO), 121; 𝐴𝑢(TO), 116; 𝐵𝑢(LO), 114;
6 142 𝐴𝑢(LO), 140; 𝐵𝑢(LO), 67 + 𝐴𝑢(LO), 73;
7 194 𝐵𝑢(LO), 114 + 𝐵𝑢(LO), 84; 𝐴𝑢(LO), 121 + 𝐴𝑢(LO), 73;
8 217 𝐴𝑢(LO), 106 + 𝐵𝑢(LO), 106;
9 236 𝐴𝑢(LO), 121 + 𝐵𝑢(LO), 114; 𝐴𝑢(LO), 162 + 𝐴𝑢(LO), 73;
10 279 𝐵𝑢(LO), 114 + 𝐴𝑢(LO), 162;
11 322 𝐴𝑢(LO), 240 + 𝐵𝑢(LO), 84; 𝐴𝑢(LO), 162 + 𝐴𝑢(LO), 162;
12 355 𝐴𝑢(LO), 268 + 𝐵𝑢(L), 84;
13 401 𝐴𝑢(LO), 240 + 𝐵𝑢(LO), 260;
14 446 𝐵𝑢(LO), 224 + 𝐵𝑢(LO), 224;
15 482 𝐵𝑢(LO), 260 + 𝐵𝑢(LO), 224;
16 493 𝐴𝑢(LO), 268 + 𝐵𝑢(LO), 224;
17 525 𝐵𝑢(LO), 260 + 𝐴𝑢(LO), 268;

group𝐷2ℎ.The superposition of excitonic luminescence with
resonanceRaman scattering emissionwas observed.The lines
of resonance Raman emission were identified and attributed
to optical phonons in Brillouin zone center.
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