110 research outputs found

    Multiwavelength observations of the blazar BL Lacertae: a new fast TeV Ξ³-ray flare

    Get PDF
    Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan (South Korea). Published in Proceeding of Science.Observations of fast TeV Ξ³-ray flares from blazars reveal the extreme compactness of emitting regions in blazar jets. Combined with very-long-baseline radio interferometry measurements, they probe the structure and emission mechanism of the jet. We report on a fast TeV Ξ³-ray flare from BL Lacertae observed by VERITAS, with a rise time of about 2.3 hours and a decay time of about 36 minutes. The peak flux at >200 GeV measured with the 4-minute binned light curve is (4.2Β±0.6)Γ—10βˆ’6photonsmβˆ’2sβˆ’1, or ∼180% the Crab Nebula flux. Variability in GeV Ξ³-ray, X-ray, and optical flux, as well as in optical and radio polarization was observed around the time of the TeV Ξ³-ray flare. A possible superluminal knot was identified in the VLBA observations at 43 GHz. The flare constrains the size of the emitting region, and is consistent with several theoretical models with stationary shocks

    Behaviour of the Blazar CTA 102 during two giant outbursts

    Get PDF
    Blazar CTA 102 underwent exceptional optical and high-energy outbursts in 2012 and 2016-2017. We analyze its behaviour during these events, focusing on polarimetry as a tool that allows us to trace changes in the physical conditions and geometric configuration of the emission source close to the central black hole. We also use Fermi gamma-ray data in conjunction with optical photometry in an effort to localize the origin of the outbursts.AST-1615796 - Boston Universit

    The Sustainable Development Goals for Eastern Partnership Countries: Impact of Institutions

    Get PDF
    In 2015 UN established 17 Sustainable Development Goals (SDGs) as priorities for further development for 193 member countries. SDGs include 169 targets, which cover all issues of sustainability. Governments require specific researches to elaborate adequate strategies considering current parameters of social and economic development of countries. Eastern Partnership countries and the Russian Federation are classified as countries in transition with not really powerful economies. Therefore it’s very important to increase the efficiency of expenditures through enhancing institutions. This study attempts to research dependencies between changes in quality of institutions and SDGs performance for countries in transition. Panel data regression with offered Composite Index of Sustainable development Goals as dependent variable defines significance of links and can be used to define priorities in national policies

    Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° МОП-транзистора Π½Π° воздСйствиС рСнтгСновского ΠΈ Π³Π°ΠΌΠΌΠ°-облучСния

    Get PDF
    Introduction. Electromagnetic or ionizing radiation (IO) has great influence for radiation resistance of MOSFETs (metal–oxide–semiconductor field-effect transistors) and integrated circuits. Oxide, for the studied samples, is silicon dioxide, which acts as a dielectric in MOS structure. Currently, in literature there is no unambiguous idea of complete radiation response of MOSFETs to various types of ionizing radiation.Aim. To study radiation response of MOSFETs under influence of gamma and X-ray irradiation; to study effect of applied external potential of a gate substrate.Materials and methods. A total dose effect of gamma and X-ray radiation on the threshold voltage of MOSFET with a polysilicon gate and a gate oxide thickness of 120 nm with an applied external potential (-3, -2, 0, 3, 5, 10) V was studied. For gamma irradiation radionuclides cesium-137 with an energy of gamma quanta of 662 keV were used. X-ray tube with tungsten-rhenium cathode operated in modes 40 keV and 90 mkA was used as a source of X-ray radiation. Dose and time dependences of the change in the threshold voltage of n- and pchannel MOSFET were analyzed. It was performed that the influence of gamma and X-ray radiation led to the same effects in the studied structures. The maximum radiation response of MOSFETs was observed at high positive gate-substrate potentials. The approximation parameters associated with the concentration and capture cross sections of traps responsible for the formation of charges in the dielectric gate through irradiation were determined.Results. Strong influence of gamma and X-ray radiation led to the same effects in the studied structures. The applied voltage to the MOS structure during X-ray irradiation had a strong effect on their radiation response. The maximum radiation response of MOSFET at high positive gate-substrate potentials was observed. Proportionality coefficients to ensure the coincidence of the initial sections of the dose dependences for various applied gate-substrate potentials during irradiation were introduced. The coefficients allowed one to compare active and passive modes of operation of the X-ray emitter. Correction factors depended on the polarity of the applied gate-substrate potential. For negative potential, the proportionality coefficient value was 38.5. For the case of positive polarity the coefficient did not depend on the applied potential and the value was 120.Conclusion. The study allows one to determine the coefficients for dose dependences of threshold voltage changes. For the first time, to establish a numerical relations between the effects of various types of radiation sources at irradiation doses up to 1.9 Β· 104 Rad and proportionality coefficients becomes possible. It allows one to take into account the influence of applied potentials during irradiation on the radiation response of MOS structures.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π˜ΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ излучСния (ИИ) ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ большой ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰Π΅ΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ. Π’ настоящСС врСмя Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π½Π΅Ρ‚ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠ³ΠΎ прСдставлСния ΠΎ ΠΏΠΎΠ»Π½ΠΎΠΌ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ΅ ΠœΠžΠŸΡ‚Ρ€Π°Π½Π·ΠΈΡΡ‚ΠΎΡ€ΠΎΠ² Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ ИИ (Π³Π°ΠΌΠΌΠ°- ΠΈ рСнтгСновскоС). ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ наибольший интСрСс прСдставляСт радиационная ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ МОП ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… микросхСм ΠΊ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ этих ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° МОП-транзисторов Π½Π° воздСйствиС Π³Π°ΠΌΠΌΠ°- ΠΈ рСнтгСновского облучСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния Π½Π° этот ΠΎΡ‚ΠΊΠ»ΠΈΠΊ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π²ΠΎ врСмя рСнтгСновского облучСния внСшнСго ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π·Π°Ρ‚Π²ΠΎΡ€β€’ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ структурами являлись МОП-транзисторы с ΠΏΠΎΠ»ΠΈΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹ΠΌ Π·Π°Ρ‚Π²ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π΅ оксида (диоксида крСмния) 120 Π½ΠΌ. Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΎΠΌ Π³Π°ΠΌΠΌΠ°-излучСния выступали Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Ρ‹ Ρ†Π΅Π·ΠΈΠΉ-137, рСнтгСновского излучСния – рСнтгСновская Ρ‚Ρ€ΡƒΠ±ΠΊΠ° с Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌ-Ρ€Π΅Π½ΠΈΠ΅Π²Ρ‹ΠΌ ΠΊΠ°Ρ‚ΠΎΠ΄ΠΎΠΌ. ΠΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΎΡΡŒ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ напряТСния n- ΠΈ p-ΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹Ρ… транзисторов ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ транзисторной ΠΏΠ°Ρ€Ρ‹.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π“Π°ΠΌΠΌΠ°- ΠΈ рСнтгСновскоС излучСния приводят ΠΊ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ эффСктам Π² исслСдуСмых структурах. ΠŸΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ напряТСния ΠΊ МОП-структурС Π² процСссС рСнтгСновского облучСния ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ сильноС влияниС Π½Π° Π΅Π΅ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΎΡ‚ΠΊΠ»ΠΈΠΊ. ΠœΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΎΡ‚ΠΊΠ»ΠΈΠΊ МОП-транзисторов наблюдался ΠΏΡ€ΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°Ρ… Π·Π°Ρ‚Π²ΠΎΡ€β€’ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°. Π‘Ρ‹Π»ΠΈ Π²Π²Π΅Π΄Π΅Π½Ρ‹ коэффициСнты ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ совпадСниС Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… участков Π΄ΠΎΠ·ΠΎΠ²Ρ‹Ρ… зависимостСй для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ² Π·Π°Ρ‚Π²ΠΎΡ€β€’ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ значСния коэффициСнтов ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ зависимостСй измСнСния ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ напряТСния МОП-транзистора ΠΎΡ‚ Π΄ΠΎΠ·Ρ‹ ИИ. УстановлСно числСнноС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ влияниСм Π³Π°ΠΌΠΌΠ°- ΠΈ рСнтгСновского ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ Π΄ΠΎΠ·Π°Ρ… Π΄ΠΎ 1.9 Β·104 Ρ€Π°Π΄ (коэффициСнт ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ составил 38.5). ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ коэффициСнты ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ пассивный (Π±Π΅Π· прилоТСния ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°) Ρ€Π΅ΠΆΠΈΠΌ облучСния Π³Π°ΠΌΠΌΠ°-ΠΊΠ²Π°Π½Ρ‚Π°ΠΌΠΈ ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ (с ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π·Π°Ρ‚Π²ΠΎΡ€β€’ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°) Ρ€Π΅ΠΆΠΈΠΌ облучСния рСнтгСновскими ΠΊΠ²Π°Π½Ρ‚Π°ΠΌΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Π΅ коэффициСнты зависят ΠΎΡ‚ полярности ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π·Π°Ρ‚Π²ΠΎΡ€β€’ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°. Для ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° коэффициСнт ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ составил 38.5. ΠŸΡ€ΠΈ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ полярности коэффициСнт Π½Π΅ зависит ΠΎΡ‚ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° ΠΈ составляСт 120
    • …
    corecore