68 research outputs found

    Experimental and theoretical cross sections for positron scattering from the pentane isomers.

    Get PDF
    Isomerism is ubiquitous in chemistry, physics, and biology. In atomic and molecular physics, in particular, isomer effects are well known in electron-impact phenomena; however, very little is known for positron collisions. Here we report on a set of experimental and theoretical cross sections for low-energy positron scattering from the three structural isomers of pentane: normal-pentane, isopentane, and neopentane. Total cross sections for positron scattering from normal-pentane and isopentane were measured at the University of Trento at incident energies between 0.1 and 50 eV. Calculations of the total cross sections, integral cross sections for elastic scattering, positronium formation, and electronic excitations plus direct ionization, as well as elastic differential cross sections were computed for all three isomers between 1 and 1000 eV using the independent atom model with screening corrected additivity rule. No definitive evidence of a significant isomer effect in positron scattering from the pentane isomers appears to be present. (C) 2016 AIP Publishing LLC

    Study of the reaction dynamics of Li+HF, HCl by the crossed molecular beams method

    Get PDF
    The reactions of (I) Li + HF {yields} LiF + H and (II) Li + HCl {yields} LiCl + H have been studied by the crossed molecular beams method. Angular distributions [N({theta})] of product molecules have been measured at 4 collision energies (E{sub c}) ranging from about 2 to 9 kcal/mole and time-of-flight (TOF) measurements of product velocity distribution were made at approximately E{sub c} = 3 and 9 kcal/mole for both reactions (I) and (II). The combined N({theta}) and TOF results were used to generate contour maps of lithium-halide product flux in angle and recoil velocity in the center-of-mass (c.m.) frame. For reaction (I) at E{sub c} = 3 kcal/mole the c.m. angular distribution [T({theta})] shows evidence of complex formation with near forward-backward symmetry; slightly favored backward peaking is observed. The shape of this T({theta}) indicates there is significant parallel or antiparallel spatial orientation of initial and final orbital angular momentum {rvec L} and {rvec L}', even though with H departing L' must be rather small and {rvec L} = {rvec J}', where {rvec J}' is the final rotational angular momentum vector. It is deduced that coplanar reaction geometries are strongly favored. At E{sub c} = 8.7 kcal/mole the T({theta}) of reaction (I) becomes strongly forward peaked. The product translational energy distributions P(E{sub T}') at both these collision energies give an average E{sub T}' of ~55% of the total available energy; this appears consistent with a theoretically calculated late exit barrier to reaction. The T({theta}) at E{sub c} = 2.9 and 9.2 kcal/mole for reaction (II) are forward-sideways peaked. Most of the available energy (~70%) goes into recoil velocity at both E{sub c} for LiCl formation. This suggests a late energy release for this 11 kcal/mole exoergic reaction. Both reactions (I) and (II) show evidence of no more than a minor partitioning of energy into product vibrational excitation. Integral reactive cross sections ({sigma}{sub R}) are evaluated by integrating the product distributions in the c.m. frame and using small angle nonreactive scattering of Li as an absolute calibrant. Values of {sigma}{sub R} are: for LiF formation {sigma}{sub R} ~ 0.8 {Angstrom}{sup 2} and 0.94 {Angstrom}{sup 2} at E{sub c} = 3 and 8.7 kcal/mole, while for LiCl formation {sigma}{sub R} = 27 {Angstrom}{sup 2} and 42 {Angstrom}{sup 2} at E{sub c} = 2.9 and 9.2 kcal/mole, with estimated absolute and relative uncertainties of a factor of 2, and 30%, respectively. Average opacities for reaction have been estimated from the reaction cross sections and the extent of rotational excitation of products to be about 0.1 for reaction (I) and 1 for reaction (II), for L values allowed to react. These results are discussed in some detail with regard to the kinematic constraints, reaction dynamics and potential energy surfaces for these two reactions, and related experimental and theoretical work are noted. In addition, angular distributions of nonreactive scattering of Li off HF and HCl are measured at 4 different E{sub c} each. Rainbow structure is observed at low E{sub c} and the angular distributions are fit by a spherically symmetric piecewise analytic potential. The resulting values of the potential's well depth ({epsilon}) and minimum position (r{sub m} ) are: for Li + HF {epsilon} = 0.46 kcal/mole and r{sub m} = 4.34 {Angstrom} and for Li + HCl {epsilon} = 0.32 kcal/mole and r{sub m} = 4.7 {Angstrom}. These results differ significantly from some earlier estimates based on the measurements of integral scattering cross sections

    Effect of base–acid properties of the mixtures of water with methanol on the solution enthalpy of selected cyclic ethers in this mixture at 298.15 K

    Get PDF
    The enthalpies of solution of cyclic ethers: 1,4- dioxane, 12-crown-4 and 18-crown-6 in the mixture of water and methanol have been measured within the whole mole fraction range at T = 298.15 K. Based on the obtained data, the effect of base–acid properties of water– methanol mixtures on the solution enthalpy of cyclic ethers in these mixtures has been analyzed. The solution enthalpy of cyclic ethers depends on acid properties of water– methanol mixtures in the range of high and medium water contents in the mixture. Based on the analysis performed, it can be assumed that in the mixtures of high methanol contents, cyclic ethe

    NON-RESONANT MICROWAVE ABSORPTION AND RELAXATION FREQUENCY AT ELEVATED PRESSURES

    No full text

    Eye movements and imitation learning: Intentional disruption of expectation

    No full text

    Using Experience-Based Learning to Enhance Student Success: Step 1 - Exploratory Research to Identify Discipline-Specific Competencies

    No full text
    This research identifies discipline specific competencies for six major areas of study in undergraduate business programs: Accounting, Business Information Systems, Finance, Human Resource Management, Marketing, and Supply Chain Management. Initially, we intended to investigate how experience based learning approaches could be used to close the gaps between the skills that employers desire and the skills that students possess upon graduation. However, we quickly discovered two things: 1) not only was there a lack of research on gaps between discipline specific skills that employers desire and what skills students possess, 2) there does not seem to be a clear and consistent understanding of the common discipline specific competencies that employers actually desire in undergraduate business students. There has been plenty of research o
    corecore