85 research outputs found
Fluctuations of the free energy in the REM and the p-spin SK models
We consider the random fluctuations of the free energy in the -spin
version of the Sherrington-Kirkpatrick model in the high temperature regime.
Using the martingale approach of Comets and Neveu as used in the standard SK
model combined with truncation techniques inspired by a recent paper by
Talagrand on the -spin version, we prove that (for even) the random
corrections to the free energy are on a scale only, and after
proper rescaling converge to a standard Gaussian random variable. This is shown
to hold for all values of the inverse temperature, \b, smaller than a
critical \b_p. We also show that \b_p\to \sqrt{2\ln 2} as . Additionally we study the formal limit of these
models, the random energy model. Here we compute the precise limit theorem for
the partition function at {\it all} temperatures. For \b<\sqrt{2\ln2},
fluctuations are found at an {\it exponentially small} scale, with two distinct
limit laws above and below a second critical value : For \b
up to that value the rescaled fluctuations are Gaussian, while below that there
are non-Gaussian fluctuations driven by the Poisson process of the extreme
values of the random energies. For \b larger than the critical , the fluctuations of the logarithm of the partition function are on scale
one and are expressed in terms of the Poisson process of extremes. At the
critical temperature, the partition function divided by its expectation
converges to 1/2.Comment: 40pp, AMSTe
-Martin boundary of killed random walks in the quadrant
We compute the -Martin boundary of two-dimensional small steps random
walks killed at the boundary of the quarter plane. We further provide explicit
expressions for the (generating functions of the) discrete -harmonic
functions. Our approach is uniform in , and shows that there are three
regimes for the Martin boundary.Comment: 18 pages, 2 figures, to appear in S\'eminaire de Probabilit\'e
On the functions counting walks with small steps in the quarter plane
Models of spatially homogeneous walks in the quarter plane
with steps taken from a subset of the set of jumps to the eight
nearest neighbors are considered. The generating function of the numbers of such walks starting at the origin and
ending at after steps is studied. For all
non-singular models of walks, the functions and are continued as multi-valued functions on having
infinitely many meromorphic branches, of which the set of poles is identified.
The nature of these functions is derived from this result: namely, for all the
51 walks which admit a certain infinite group of birational transformations of
, the interval of variation of splits into
two dense subsets such that the functions and are shown to be holonomic for any from the one of them and
non-holonomic for any from the other. This entails the non-holonomy of
, and therefore proves a conjecture of
Bousquet-M\'elou and Mishna.Comment: 40 pages, 17 figure
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΠΎΠΉ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ Streptococcus pneumoniae ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π°ΠΊΡΠΈΠ½ΠΎΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ ΠΏΠ½Π΅Π²ΠΌΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ
The constant increase in the level of resistance of Streptococcus pneumoniae to antimicrobial drugs significantly affects the algorithms for the pharmacotherapy of pneumococcal infection, reduces the effectiveness of the therapy and increases the healthcare costs. In this regard, specific vaccine prevention of pneumococcal diseases is a socially significant and economically promising and profitable area.The aim of the study is to analyze the current status of antimicrobial resistance of S. pneumoniae in healthy carriers and patients with non-invasive and invasive pneumococcal infections, as well as specific vaccine prevention of pneumococcal infection.Conclusion. An increase in the number of pneumococcal strains resistant to macrolides and tetracycline has been noted, as well as a trend toward an increase in resistance to beta-lactam antibiotics. Given the spread of resistant strains of S. pneumoniae, a continuous epidemiological surveillance of pneumococcal infection with an assessment of the dynamics of pneumococcal serotype resistance and the effectiveness of vaccination is needed on a global scale.ΠΠΎΡΡΠΎΡΠ½Π½ΡΠΉ ΡΠΎΡΡ ΡΡΠΎΠ²Π½Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ Streptococcus pneumoniae ΠΊ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΡΠΌ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°ΠΌ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π²Π»ΠΈΡΠ΅Ρ Π½Π° Π°Π»Π³ΠΎΡΠΈΡΠΌΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΏΠ½Π΅Π²ΠΌΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ, ΡΠ½ΠΈΠΆΠ°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Ρ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°ΡΡΠ°ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ Π·Π΄ΡΠ°Π²ΠΎΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ. Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π°ΠΊΡΠΈΠ½ΠΎΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠ° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΏΠ½Π΅Π²ΠΌΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΠΎΠΉ ΡΡΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ Π·Π½Π°ΡΠΈΠΌΡΠΌ ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΈ Π²ΡΠ³ΠΎΠ΄Π½ΡΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ β ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΠΎΠΉ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ S. pneumoniae Ρ Π·Π΄ΠΎΡΠΎΠ²ΡΡ
Π½ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΈ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΏΠ½Π΅Π²ΠΌΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠ΅ΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π°ΠΊΡΠΈΠ½ΠΎΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ ΠΏΠ½Π΅Π²ΠΌΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΡΡΠ²Π»Π΅Π½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΡΠ°ΠΌΠΌΠΎΠ² ΠΏΠ½Π΅Π²ΠΌΠΎΠΊΠΎΠΊΠΊΠ°, ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
ΠΊ ΠΌΠ°ΠΊΡΠΎΠ»ΠΈΠ΄Π°ΠΌ ΠΈ ΡΠ΅ΡΡΠ°ΡΠΈΠΊΠ»ΠΈΠ½Ρ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Π° ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΡ ΠΊ ΡΠΎΡΡΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΊ Π±Π΅ΡΠ°-Π»Π°ΠΊΡΠ°ΠΌΠ½ΡΠΌ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°ΠΌ. Π£ΡΠΈΡΡΠ²Π°Ρ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
ΡΡΠ°ΠΌΠΌΠΎΠ² S. pneumoniae, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ³ΠΎ ΡΠΏΠΈΠ΄Π΅ΠΌΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΠΏΠ½Π΅Π²ΠΌΠΎΠΊΠΎΠΊΠΊΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ Ρ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΡΠ΅ΡΠΎΡΠΈΠΏΠΎΠ² ΠΏΠ½Π΅Π²ΠΌΠΎΠΊΠΎΠΊΠΊΠ° ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π²Π°ΠΊΡΠΈΠ½ΠΎΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌ ΠΌΠΈΡΠ΅
Martin boundary of a reflected random walk on a half-space
The complete representation of the Martin compactification for reflected
random walks on a half-space is obtained. It is shown that the
full Martin compactification is in general not homeomorphic to the ``radial''
compactification obtained by Ney and Spitzer for the homogeneous random walks
in : convergence of a sequence of points to a
point of on the Martin boundary does not imply convergence of the sequence
on the unit sphere . Our approach relies on the large
deviation properties of the scaled processes and uses Pascal's method combined
with the ratio limit theorem. The existence of non-radial limits is related to
non-linear optimal large deviation trajectories.Comment: 42 pages, preprint, CNRS UMR 808
ΠΠΠ ΠΠΠΠ’Π Π«βΠΠΠΠΠΠΠΠ§ΠΠ‘ΠΠΠβΠΠΠΠ‘Π’ΠΠ§ΠΠΠ‘Π’ΠβΠ‘ΠΠ Π’ΠΠ ΠβΠ‘ΠΠ Π’ΠΠΠΠ ΠΠΠ¦ΠΠβΠ―Π ΠΠΠΠΠβΠ―Π§ΠΠΠΠ―βΠΠΠ£Π Π‘ΠΠΠβΠ‘ΠΠΠΠΠ¦ΠΠ
The article is concerned with increasing of crop yield and explores that production quality is influenced by the variety adjusted to local conditions. This variety is most productive for plant production and important in agricultural production. New cultivar should be highly productive, highly adaptive and environmentally plastic (to form steady crop yield in different conditions). The article explores estimation of cultivars and varieties of Amur spring barley on environmental plasticity and stability. The researchers estimated environmental plasticity and stability for 3 years (2012β2014), which differed in vegetation conditions. The authors apply regression co-efficient (bi), which characterize cultivars response to agricultural changes and stability variance (s2di), which shows cultivar response to environmental changes and its stability. New Amur variety included into the State List of Selection Inventions is not stable, which is proved by estimation in 2008β2011. Earlier it was not stable but responded well to the changes; now it is not stable but more productive in favorable conditions. The authors make the idea that varieties, which belong to the group of well-responding to the changes and stable ones are the most significant varieties. The researchers define Mishka variety as a stable and well-responding.Β ΠΠ³ΡΠΎΠΌΠ½ΡΡ ΡΠΎΠ»Ρ Π²Β ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠΈ ΡΡΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡΠΈ ΠΈΒ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΠΈΠ³ΡΠ°Π΅Ρ ΡΠΎΡΡ, ΠΏΡΠΈΡΠΏΠΎΡΠΎΠ±Π»Π΅Π½Π½ΡΠΉ ΠΊΒ ΠΌΠ΅ΡΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ. ΠΠ½ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° Π»ΡΠ±ΠΎΠΉ ΡΠ°ΡΡΠ΅Π½ΠΈΠ΅Π²ΠΎΠ΄ΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΠΈΒ Π΅Π³ΠΎ ΡΠΎΠ»Ρ Π²Β ΡΠ΅Π»ΡΡΠΊΠΎΡ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ. ΠΠΎΠ²ΡΠΉ ΡΠΎΡΡ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π²ΡΡΠΎΠΊΠΎΡΡΠΎΠΆΠ°ΠΉΠ½ΡΠΌ, Π½ΠΎ ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π²ΡΡΠΎΠΊΠΎΠΉ Π°Π΄Π°ΠΏΡΠΈΠ²Π½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΡ ΠΈΒ ΡΠΈΡΠΎΠΊΠΎΠΉ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΎΡΡΡΡ (ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°ΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΉ ΡΡΠΎΠΆΠ°ΠΉ Π²Β ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
). Π‘ΡΠ°ΡΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° Π²ΠΎΠΏΡΠΎΡΡ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΎΡΡΠΎΠ² ΠΈΒ ΡΠΎΡΡΠΎΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΌΠ΅Π½Ρ Π°ΠΌΡΡΡΠΊΠΎΠΉ ΡΠ΅Π»Π΅ΠΊΡΠΈΠΈ ΠΏΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΎΡΡΠΈ ΠΈΒ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ. Π Π°ΡΡΠ΅Ρ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΎΡΡΠΈ ΠΈΒ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π²Β ΡΡΠ΅Π΄Π½Π΅ΠΌ Π·Π° 3 Π³ΠΎΠ΄Π° (2012β2014 Π³Π³.), ΡΠΈΠ»ΡΠ½ΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠ΅ΡΡ ΠΏΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ Π²Π΅Π³Π΅ΡΠ°ΡΠΈΠΈ. ΠΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΡΠ°ΡΡΠ΅Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ (bi ), Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠ΅Π³ΠΎ ΡΠ΅Π°ΠΊΡΠΈΡ ΡΠΎΡΡΠΎΠ² Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ, ΠΈΒ Π²Π°ΡΠΈΠ°Π½ΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ (sβ2 di), ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΎΡΡ ΠΎΡΠ·ΡΠ²ΡΠΈΠ² Π½Π° ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΡΠ΅Π΄Ρ ΠΈΒ ΡΡΠ°Π±ΠΈΠ»Π΅Π½ Π»ΠΈ Π²Β ΡΡΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
. ΠΠΎΠ²ΡΠΉ ΡΠΎΡΡ Π°ΠΌΡΡΡΠΊΠΎΠΉ ΡΠ΅Π»Π΅ΠΊΡΠΈΠΈ ΠΠΌΡΡ, Π²Π½Π΅ΡΠ΅Π½Π½ΡΠΉ Π²Β ΠΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΡΠΉ ΡΠ΅Π΅ΡΡΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠΎΠ½Π½ΡΡ
Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠΉ Π²Β 2015 Π³., ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΌ, ΡΡΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅ΡΡΡ ΠΈΒ ΡΠ°Π½Π΅Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΌΠΈ ΡΠ°ΡΡΠ΅ΡΠ°ΠΌΠΈ (Π²Β 2008β2011 Π³Π³.). ΠΡΠ»ΠΈ ΠΎΠ½ ΡΠ°Π½Π΅Π΅ Π±ΡΠ» Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΌ, Π½ΠΎ Ρ
ΠΎΡΠΎΡΠΎ ΠΎΡΠ·ΡΠ²ΡΠΈΠ²ΡΠΌ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠΉ, ΡΠΎ Π²Β Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΠ½ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΉ ΠΈΒ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΠΈΠΉ Π»ΡΡΡΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π²Β Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅ΡΡ ΡΠΎΡΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΊΒ Π³ΡΡΠΏΠΏΠ΅ Ρ
ΠΎΡΠΎΡΠΎ ΠΎΡΠ·ΡΠ²ΡΠΈΠ²ΡΡ
Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΈΒ ΡΠ²Π»ΡΡΡΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΌΠΈ. ΠΠ· ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
Π½Π°ΠΌΠΈ 12 ΡΠΎΡΡΠΎΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΊΒ ΡΡΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠ½Π΅ΡΡΠΈ ΠΎΠ΄ΠΈΠ½Β β ΡΠΎΡΡΠΎΠΎΠ±ΡΠ°Π·Π΅Ρ ΠΠΈΡΠΊΠ°
Dislocation of the ozurdex implant into the anterior chamber (case of reposition)
The purpose of the study is to report a case of migration of the dexamethasone Ozurdex implant into the anterior chamber in a patient with pseudophakia and avitria and the method of reposition.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β cΠΎΠΎΠ±ΡΠΈΡΡ ΠΎ ΡΠ»ΡΡΠ°Π΅ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠ° Π΄Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠ°Π·ΠΎΠ½Π° ΠΠ·ΡΡΠ΄Π΅ΠΊΡ Π² ΠΏΠ΅ΡΠ΅Π΄Π½ΡΡ ΠΊΠ°ΠΌΠ΅ΡΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Ρ Π°ΡΡΠΈΡΠ°ΠΊΠΈΠ΅ΠΉ ΠΈ Π°Π²ΠΈΡΡΠΈΠ΅ΠΉ ΠΈ ΡΠΏΠΎΡΠΎΠ±Π΅ ΡΠ΅ΠΏΠΎΠ·ΠΈΡΠΈΠΈ
Analysis of the Karmarkar-Karp Differencing Algorithm
The Karmarkar-Karp differencing algorithm is the best known polynomial time
heuristic for the number partitioning problem, fundamental in both theoretical
computer science and statistical physics. We analyze the performance of the
differencing algorithm on random instances by mapping it to a nonlinear rate
equation. Our analysis reveals strong finite size effects that explain why the
precise asymptotics of the differencing solution is hard to establish by
simulations. The asymptotic series emerging from the rate equation satisfies
all known bounds on the Karmarkar-Karp algorithm and projects a scaling
, where . Our calculations reveal subtle
relations between the algorithm and Fibonacci-like sequences, and we establish
an explicit identity to that effect.Comment: 9 pages, 8 figures; minor change
- β¦