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Abstract: We consider the random uctuations of the free energy in the p-spin version of

the Sherrington-Kirkpatrick model in the high temperature regime. Using the martingale

approach of Comets and Neveu as used in the standard SK model combined with truncation

techniques inspired by a recent paper by Talagrand on the p-spin version, we prove that (for

p even) the random corrections to the free energy are on a scale N�(p�2)=4 only, and after

proper rescaling converge to a standard Gaussian random variable. This is shown to hold

for all values of the inverse temperature, �, smaller than a critical �p. We also show that

�p !
p
2 ln 2 as p " +1. Additionally we study the formal p " +1 limit of these models, the

random energy model. Here we compute the precise limit theorem for the partition function

at all temperatures. For � <
p
2 ln 2, uctuations are found at an exponentially small scale,

with two distinct limit laws above and below a second critical value
p
ln 2=2: For � up to

that value the rescaled uctuations are Gaussian, while below that there are non-Gaussian

uctuations driven by the Poisson process of the extreme values of the random energies. For

� larger than the critical
p
2 ln 2, the uctuations of the logarithm of the partition function

are on scale one and are expressed in terms of the Poisson process of extremes. At the critical

temperature, the partition function divided by its expectation converges to 1=2.
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1. Introduction.

In recent years it has become increasingly clear that a problem of central importance for

the understanding of disordered spin systems is the control of random uctuations of ther-

modynamic quantities [AW,NS,BM,T1]. Unfortunately, a precise control of such quantities

is very hard to come by. Concentration of measure techniques [T2] have been realized to

be eÆcient tools to get upper bounds [BGP1,BG1], but lower bounds or exact limit theo-

rems are scarce. One of these examples is the Sherrington-Kirkpatrick (SK) model in the

high-temperature phase, where a central limit theorem for the free energy was proven �rst

by Aizenman, Lebowitz and Ruelle [ALR], using cluster expansion techniques, and later by

Comets and Neveu [CN], making use of martingale methods and stochastic calculus. Their

methods have been extended to a few related cases [Tou,B1] later. In the present paper we

want to continue this e�ort by investigating a large class of natural generalisation of the SK

model, the so called p-spin SK models, and their p " +1 limit, the random energy model

(REM).

For our present purposes it is natural to consider the class of models we study as Gaussian

processes on the hypercube SN = f�1; 1gN . We will always denote the corner of SN by �;

for historical reasons they are called spin con�gurations. A Gaussian process X on SN is

characterized completely by its mean and covariance function. The processes we consider

will always be assumed to have mean zero and covariance

EX�X�0 � f(RN (�; �
0)); (1:1)

where f depends on the so-called overlap4, RN (�; �
0) � N�1(�; �0) � N�1

P
N

i=1 �i�
0
i, In

this note we will concentrate on the case where f(x) = fp(x) := xp, with p even.5 In this

case, X� can be represented in the form

X� = N�p=2
X

i1;i2;::: ;ip

Ji1;i2;:::;ip�i1�i2 � � � �ip (1:2)

with Ji1;:::;ip a family of i.i.d. normal random variables. Since for p = 2 we obtain the classical

SK model, this representation justi�es the name p-spin SK model. Note that as p increases,

the process gets more and more de-correlated, and in the limit p " +1 we arrive at the case

where X� are i.i.d. normal random variables.

4The overlap is related to the Hamming distance dHam by dHam(�; �
0) = N(1�RN (�; �

0))=2.
5The case p odd can also be treated, but presents considerable additional computational problems.
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Given such a Gaussian process, our main object of interest is the so called partition func-

tion,

Z�;N � E� e
�

p
NX� � 2�N

X
�2SN

e�
p
NX� : (1:3)

The quantities e�
p
NX� are called Boltzmann weights and the parameter � 2 R+ is known

as the inverse temperature, and HN (�) �
p
NX� as (minus) the Hamiltonian in statistical

mechanics. Z�;N are random variables, and we are primarily interested in their behaviour as

N tends to in�nity. In statistical mechanics, it is customary to introduce the so-called free

energy

F�;N � � 1

�N
lnZ�;N : (1:4)

It is easy to prove in all the models we consider here, that for all values of �, F�;N is a

self-averaging quantity, i.e. that

lim
N"+1

jF�;N � EF�;N j = 0 a.s. (1:5)

It is, however, not known in general whether the so called quenched free energy EF�;N con-

verges to a limit as N tends to in�nity. This has, however, been proven for suÆciently small

values of �: more precisely, one knows that

Theorem 1.1. De�ne ~�2 = 1, and for p > 2

~�2
p
� inf

0<m<1
(1 +m�p)�(m) (1:6)

where �(m) � [(1 �m) ln(1�m) + (1 +m) ln(1 +m)]=2: Then for all � < ~�p

lim
N"+1

F�;N;p = ��=2: (1:7)

Remark: For p = 2 this result was �rst proven in [ALR]. A very simple proof has later

been given by Talagrand [T]. Comets [C] has shown that the value � = 1 is optimal in the

sense that (1.7) fails for � > 1. The result for p � 3 is due to Talagrand [T1]. It is clear

that in all cases (1.7) will fail for � �
p
2 ln 2 which by a more elaborate computation can

be improved to � �
p
2 ln 2(1 � 2�cpp) with cp < 5, for p large [B2]. On the other hand, a

simple calculation shows that ~�p �
p
2 ln 2(1� 2�p=2 ln 2). One should note that to get (1.7)

up to a value so close to
p
2 ln 2 required a substantial modi�cation of the original argument

of [T2], namely the use of a \truncated" second moment method. Such a truncation will also

be the main diÆculty in obtaining our results6.

6For similar reasons, slightly di�erent truncations were also used by Toubol [Tou] (and probably �rst) in

the study of the CLT for the SK model with vector valued spins.
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In the case of the REM, it is well known that the critical inverse temperature ~�REM =
p
2 ln 2 and that [D2]

lim
N"+1

F�;N;REM =

(
��=2; if � �

p
2 ln 2

�
p
2 ln 2 + ��1 ln 2; if � �

p
2 ln 2:

(1:8)

As a consequence one has that (this result is essentially contained in [D1], a rigorous proof

follows easily from the results contained in [T1]7)

lim
p"+1

lim sup
N"+1

F�;N;p = lim
p"+1

lim inf
N"+1

F�;N;p = lim
N"+1

F�;N;REM : (1:9)

In this note we will control the uctuations of the free energy in (essentially) all of the domain

of parameters �, p (even) where the limit is known to exists, i.e. the high temperature regions

of the p-spin models, and the entire temperature range in the REM. Although the REM is

rather singular and the techniques used for that case are totally di�erent from those we will

use for the p-spin models, we felt it would be instructive to include this singular limiting

case in this paper. Moreover, it turns out that in spite of the heavy investigation the REM

has enjoyed over the years [D1,D2,OP,GMP,Ru], no precise uctuation results for the free

energy are available in the literature. Finally, we are convinced that the reader will be rather

surprised by the rich structure the uctuation behaviour this model exhibits.

Let us now state our results. We begin with the p-spin SK models.

Theorem 1.2 Consider the p-spin SK-model with p = 2k � 2. There exists �p > 0 such

that for all � < �p

N (p�2)=4 ln
Z�;N

EZ�;N

D!M1(
p
�) (1:10)

in distribution as N " +1, where M1(t) is the centered Gaussian process with mean zero

and covariance

E (M1(t)�M1(s))2 = (t� s)
�
(p� 1)!!

�
: (1:11)

The value of �p can be estimated reasonably well. To state lower bound on �p we need,

however, some notation. We de�ne the functions

I(m1;m2;m3) =
1

4

�
(1 +m1 +m2 +m3) ln(1 +m1 +m2 +m3)

+ (1�m1 �m2 +m3) ln(1�m1 �m2 +m3)

+ (1 +m1 �m2 �m3) ln(1 +m1 �m2 �m3)

+ (1�m1 +m2 �m3) ln(1�m1 +m2 �m3)
�
;

(1:12)

7Private communication by M. Talagrand.
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Sp(m1;m2;m3) =
h�
1 +

m
p

1 �m
p

2m
p

3

1�m
2p
3

�2
+
�
1 +

m
p

2 �m
p

1m
p

3

1�m
2p
3

�2
+ 2m

p

3

�
1 +

m
p

1 �m
p

2m
p

3

1�m
2p
3

��
1 +

m
p

2 �m
p

1m
p

3

1�m
2p
3

�i1=2
;

(1:13)

Rp(m1;m2;m3) =
2m

p

1m
p

2m
p

3 �m
2p
1 �m

2p
2

2(1�m
2p
3 )

; (1:14)

and

Up(m1;m2;m3) =I(m1;m2;m3)(1 +m
p

3)
h
Sp(m1;m2;m3)

q
2 + 2m

p

3

+Rp(m1;m2;m3)(1 +m
p

3)� (2 +m
p

3)
i�1

(1:15)

on the set

A �
�
m1;m2;m3 2 [�1; 1]3 j 1�m1 �m2 +m3 > 0; 1 �m1 +m2 �m3 > 0;

1 +m1 �m2 �m3 > 0
	
:

(1:16)

Note that the function I(m1;m2;m3) is symmetric inm1,m2 andm3, and that Sp(m1;m2;m3),

Rp(m1;m2;m3) and Up(m1;m2;m3) are symmetric in m1 and m2. Let

Yp(m1;m2;m3) =max
n
I(m1;m2;m3)

�
2

3
+

1

m
p

1 +m
p

2 +m
p

3

�
;

Up(m1;m2;m3); Up(m1;m3;m2); Up(m2;m3;m1)
o
:

(1:17)

With this notation we have

Theorem 1.3 Let p = 2k > 2. Then

inf
m1;m2;m32A

Yp(m1;m2;m3) � �2
p
< 2 ln 2: (1:18)

In particular

lim
p"+1

�2
p
= 2 ln 2: (1:19)

We see that the scale on which the partition functions uctuate decreases rapidly as p

increases. One might guess that the scale becomes exponentially small in N in the limiting

random energy model. This is indeed true, but more surprising things happen, as the following

theorem states:

Theorem 1.4 The free energy of the REM has the following uctuations:

(i) If � <
p
ln 2=2, then

e
N
2
(ln 2��2) ln

Z�;N

EZ�;N

D! N (0; 1): (1:20)
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(ii) If � =
p
ln 2=2, then

p
2e

N
2
(ln 2��2) ln

Z�;N

EZ�;N

D! N (0; 1): (1:21)

(iii) Let � � �=
p
2 ln 2. If

p
ln 2=2 < � <

p
2 ln 2, then

e
N
2
(
p
2 ln 2��)2+�

2
[ln(N ln 2)+ln 4�] ln

Z�;N

EZ�;N

D!
Z 1

�1
e�z(P(dz) � e�zdz); (1:22)

where P denotes the Poisson point process on R with intensity measure e�xdx.

Theorem 1.3 covers the high temperature regime. However, in the REM we can also

compute the uctuations in the low temperature phase.

Theorem 1.5

(i) If � =
p
2 ln 2, then

e
1
2
[ln(N ln 2)+ln 4�]

� Z�;N

EZ�;N
�1

2
+
ln(N ln 2) + ln 4�

4
p
�N ln 2

�
D!
Z 0

�1
e�z(P(dz)�e�zdz)+

1Z
0

ezP(dz):

(1:23)

(ii) If � >
p
2 ln 2, then

e�N [�
p
2 ln 2�ln 2]+�

2
[ln(N ln 2)+ln 4�]Z�;N

D!
1Z

�1

e�zP(dz) (1:24)

and

lnZ�;N � E ln Z�;N
D! ln

1Z
�1

e�zP(dz) � E ln

1Z
�1

e�zP(dz): (1:25)

Remark: Note that expressions like
R 0

�1 e�z(P(dz) � e�zdz) are always understood as

limy#�1
R 0

y
e�z(P(dz) � e�zdz): We will see that all the functionals of the Poisson point

process appearing are almost surely �nite random variables.

Remark: Note that the Poisson integral
R1
�1 e�zP(dz) is the partition function of Ruelle's

version of the REM [Ru]. Thus (1.25) aÆrms that above the critical temperature, the uc-

tuations of the free energy of the REM converge in distribution to those of Ruelle's model.

While this connection was surely evident for Ruelle and motivated the introduction of his

model, we have not been able to �nd a rigorous statement of this connection in the literature.

In [GMP] the scale on which uctuations take place has been established, but no actual limit

theorem was proven.



Fluctuations 7

Remark: It is interesting to observe that in the REM there is a second \phase transition"

within the high-temperature phase at which the uctuations become non-Gaussian. In fact,

in the REM the main phase transition can be interpreted as a breakdown of the Law of

Large Numbers, while the second transition corresponds to a breakdown of the Central Limit

Theorem.

The remainder of this paper is organized as follows. In the next section we present the

proofs of Theorems 1.2 and 1.3. They are based on an adaptation of the martingale method of

Comets and Neveu. The essential new ingredient is the rather involved truncation procedure

inspired by Talagrand's work. However, in the proof of the CLT, the computational aspects

become even more involved and require the consideration of truncated third moment of the

partition function. For this reason Section 2 is rather long and quite technical. However, the

proof is organized in such a way that the CLT is �rst proven for \very high" temperatures

where no truncations are necessary, while the more technical aspects needed to approach

the critical temperature are dealt with separately later. Section 3 is devoted to proving

Theorems 1.4 and 1.5 for the REM. It is technically completely di�erent and independent

from Section 2. It can therefore be read independently from the rest of the paper. In an

appendix we explain some of the technical diÆculties that appear in the case p odd and we

explain the result to be expected in that case.

2. The CLT in the p-spin model

The proof of the central limit theorem in the p-spin SK model relies on a martingale

central limit theorem which uses that fact that a Gaussian random variable can always

be seen as the marginal distribution of a Brownian motion. Thus we follow Comets and

Neveu and introduce the p-parameter family of independent standard Brownian motion-

s (Ji1;i2;::: ;ip(t); t 2 R
+)i1;i2;::: ;ip2N with EJi1 ;i2;::: ;ip(t) = 0 and EJ2

i1 ;i2;::: ;ip
(t) = t. The

Hamiltonian of the p-spin SK model can then be written as HN (�; t) =
p
NX�(t), where

X�(t) =
1p
Np

X
1�i1;i2;::: ;ip�N

Ji1;i2;::: ;ip(t)�i1�i2 � � � �ip : (2:1)

Note that we can also consider it as a Gaussian process on f�1; 1gN � R
+ with mean zero

and correlation function

cov (X�(t); X�0 (s)) = (s ^ t) fp
�
RN (�; �

0)
�
; (2:2)

where fp(x) = xp. In particular, we have EH2
N
(�; t) = Nt and E expfHN (t; �)g = expfNt=2g

for all �. For later convenience we introduce the normalized partition function

�ZN (t) = E� expfHN (t; �)�Nt=2g; (2:3)
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It is related to the partition function Z�;N of Section 1 by �ZN (�
2) = Z�;N=EZ�;N , with

equality holding in law. The important point of this construction is that that for all �xed

N > 1, �ZN (t) is a continuous martingale in the variable t with E �ZN (t) = 1.

We begin the proof with some preliminary steps along the lines of [CN]. Let us �nd the

bracket < �ZN (t) > of the martingale �ZN (t), i. e. the unique increasing process vanishing at

zero, such that �Z2
N
(t)� < �ZN (t) > is the continuous martingale (see [RY]). By Ito's formula,

�ZN (t) satis�es the following stochastic di�erential equation:

d �ZN (t) = E� expfHN (t; �) �Nt=2gdHN (t; �): (2:4)

Then due to well-known properties of martingale brackets

< �ZN (t) >=E�;�0 <

tZ
0

eHN (s;�)�Ns=2 dHN (s; �);

tZ
0

eHN (s;�0)�Ns=2 dHN(s; �
0) >

=E�;�0

tZ
0

eHN (s;�)+HN (s;�0)�Ns d < HN (s; �);HN (s; �
0) >

=E�;�0

tZ
0

eHN (s;�)+HN (s;�0)�NsNfp

�
RN (�; �

0)
�
ds:

(2:5)

Since

E

tZ
0

�Z�2
N

(s) d < �ZN (s) >=E

tZ
0

E�;�0 e
HN (s;�)+HN (s;�0)�NsNfp

�
RN (�; �

0)
�

E�;�0 eHN (s;�)+HN (s;�0)�Ns
ds � Nt <1;

(2:6)

we may introduce a continuous local martingale MN (t) =
R
t

0
�Z�1
N

(s) d �ZN (s): Thus �ZN (t)

solves the stochastic di�erential equation

d �ZN (t) = �ZN (t) dMN (t)

and the following fundamental representation of �ZN (t) holds:

�ZN (t) = expfMN (t)� 1=2 < MN (t) >g: (2:7)

Here < MN (t) > is the bracket of MN (t) and < MN (t) >=
R
t

0
�Z�2
N

(s) d < �ZN (s) > : Let us

note that

d

dt
< MN (t) >= �Z�2

N
(t)

d

dt
< �ZN (t) >

= �Z�2
N

(t)

�
E�;�0 e

HN (t;�)+HN (t;�0)�NtNfp

�
RN (�; �

0)
��

:

(2:8)
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Note also that MN (t) is locally square integrable. In fact, by (2.6)

EM2
N
(t) = E < MN (t) >= E

tZ
0

�Z�2
N

(s) d < �ZN (s) >� Nt <1: (2:9)

To prove Theorems 1.2 and 1.3, we will show that for all t satisfying

t < inf
m1;m2;m32A

Yp(m1;m2;m3): (2:10)

the bracket of the local martingale N (p�2)=4MN (t), which is N (p�2)=2 < MN (t) >, converges

to tE�p in probability as N " +1. Here � is a Gaussian random variable with E� = 0,

E�2 = 1: Then by the martingale convergence theorem (see Theorem 3.1.8 in [JS]) the local

martingale N (p�2)=4MN (t) converges to M1(t) in law as N " +1. This fact together with

the representation (2.7) implies immediately the statement of Theorem 1.2.

Sketch of the proof of Theorems 1.2 and 1.3: We will now outline further steps of

the proof. First, we show the convergence N (p�2)=2 < MN (t) >! tE�p on a more restricted

interval of t. Lemma 2.1 reduces this problem to the convergence of

N (p�2)=2
E jVN (t)j ! 0; as N " +1; (2:11)

where

VN (t) := N� p�2

2 E�;�0

�
Np=2fp

�
RN (�; �

0)
�
� E�p

�
eHN (t;�)+HN (t;�0)�Nt:

The proof of this lemma is based on the fact that

N (p�2)=2 d

dt
< MN (t) > �E�p = N (p�2)=2 VN (t)

�Z2
N
(t)

; (2:12)

and is performed via integration. It almost mimics the proof proposed in [CN]. In particular,

we use the fact that �Z2
N
(t) is not small on events of large probability. The convergence (2.11)

is proved in Proposition 2.2. Let us give some intuition for it. One can write

EVN (t) =
X

m=0;�1=N;::: ;�1

(Nfp(m)�N (2�p)=2
E�p )etNfp(m)

P(� � �0 = mN): (2:13)

By Stirling's formula

P(� � �0 = mN) � 2p
2�(1 +m)(1�m)N

e�N�(m);
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where �(m) = [(1 +m) ln(1 +m) + (1�m) ln(1�m)]=2: (here and in the sequel we use the

symbol � to denote asymptotic equivalence, i.e. aN � bN , limN"+1
aN

bN
= 1). Note that

�(m) = �m2=2(1 + o(1)) as m! 0. Now split the right-hand side of (2.13) into two terms:

the summation in the �rst one will be over m with jmj "small enough" and in the second |

over all other m. It is not diÆcult to treat the �rst term. Since p � 3, we have for any �xed

t

tfp(m) + �(m) = �m2=2(1 + o(1)); m! 0: (2:14)

Then putting m
p
N = s, the �rst term becomes

2p
2�N

X
s=m

p
N

(N (2�p)=2sp �N (2�p)=2
E�p )e�s

2
=2 � 2N (2�p)=2

p
2�

1Z
�1

(sp � E�p )e�s
2
=2 ds;

from where the normalisation N (p�2)=2 is immediate. To ensure the convergence to zero of

the second term (the one with correlations m not close to zero), the power of the exponent

in it should be negative:

sup
m2[0;1]

(tfp(m)� �(m)) < 0:

Thus for all t < inf0<m<1 �(m)m�p, we get N (p�2)=2
EVN (t)! 0: Note that, Proposition 2.2

states a stronger result (2.11). To get rid of the absolute value of VN (t) in (2.11), we follow an

idea suggested in [CN] to apply the Cauchy-Schwartz inequality. Thus, instead of E jVN (t)j,
we get WN(t) (see the proof of Proposition 2.2) which refers to the third moment of �ZN (t).

This makes technical computations slightly tougher and leads to the bound on t (2.19) given

in Lemma 2.1 below.

Note also that these arguments are valid only for p � 3. The case p = 2 of [CN] and

[Tou] is di�erent, since there, (2.14) does not hold. This case is treated in [CN] by the

multi-dimensional Central Limit Theorem for N independent vectors (�i�
0
i
; �0

i
�00
i
; �i�

00
i
).

Next, we will extend the bound (2.19) to the full regime announced in (2.10). We have

seen, that (2.19) was imposed by con�gurations of spins with rather big correlations m in

the sum (2.13). We will reduce their contribution, using Talagrand's idea to truncate the

Hamiltonian. Consider instead of VN (t)

eVN (t; �) =E�;�0�Nfp

�
RN (�; �

0)
�
�N (2�p)=2

E�p
�
eHN (t;�)+HN (t;�0)�Nt

� 1IfHN (t;�)<(1+�)tN;HN (t;�0)<(1+�)tNg
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for some � > 0. Then

E eVN (t; �) =
X

m=0;�1=N;::: ;�1

(Nfp(m)� tN (2�p)=2)P(� � �0 = mN)

� Ee
p
Nt�1+

p
Nt�2�Nt1If�1<

p
Nt(1+�);�2<

p
Nt(1+�)g;

(2:15)

where �1; �2 are standard Gaussians with cov (�1; �2) = m. Let us again split E eVN (t; �) into

two terms with "small" and "large" m in the sum (2.15). The analysis of the �rst term is

completely analogous to the one in the case of VN (t). We can neglect the truncation here,

since �1 and �2 are almost independent. In the second term, �1 and �2 are more correlated.

But due to the truncation, the expectation of the exponent involved in this term is much

smaller than etm
p
N . In fact, by the elementary estimate (5.2) for Gaussian random variables

E e
p
Nt�1+

p
Nt�2�Nt1If�1<

p
Nt(1+�);�2<

p
Nt(1+�)g

� Ee
p
Nt(2+2mp)��Nt1If�<2

p
Nt(1+�)(2+2mp)�1g

� expf[�4Nt(1 + �)2][4 + 4mp]�1 + 2Nt(1 + �)�Ntg

= expf[Ntmp(1 + 2�)�Nt�2][1 +mp]�1g:

Then for any

t < inf
0<m<1

(1 +m�p)�(m) (2:16)

and for an appropriate choice of � all terms of the sum (2.15) with m not close to zero are

exponentially small. This implies N (p�2)=2
E eVN (t; �) ! 0. The bound (2.16) is Talagrand's

bound for the critical temperature in the p-spin SK model, see (1.6). It tends to 2 ln 2 as

p " +1.

In order to incorporate this idea into our proof, we reduce the problem of convergence

N (p�2)=2 < MN (t) >! tE�p to the following statements:

N (p�2)=2
E jeVN (t; �)j ! 0; (2:17)

and

N (p�2)=2
E j(VN (t)� eVN (t; �)) �Z�2

N
(t)j ! 0; (2:18)

for all � > 0. This is derived in Lemma 2.3 again from (2.11). In Proposition 2.4 we show

(2.17). Again, because of the absolute value, we must apply the Cauchy-Schwartz inequality

and pass to the third moment of �ZN (t). This makes technical computations much harder.

Namely, we get three standard Gaussian random variables �1; �2; �3 with covariances m1, m2,
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m3. To bene�t from the truncation for obtaining a good bound on t, we have to take into

account four di�erent cases: one when all m1;m2;m3 are large and others when two of these

correlations are large and the third is small. Then the analogue of (2.16) is the minimum of

four estimates of this kind. Therefore, the bound (2.10) is the minimum of four functions.

The convergence (2.18) is the subject of Proposition 2.5. Its proof uses ideas of M. Talagrand

and a concentration of measure inequality.

Lemma 2.1: Let

T < inf
A

I(m1;m2;m3)

m
p

1 +m
p

2 +m
p

3

: (2:19)

Then

sup
0�t�T

jN (p�2)=2 < MN (t) > �tE�p j ! 0 (2:20)

in probability, where � is a Gaussian random variable with E� = 0, E�2 = 1.

Proof. Let us denote by

VN (t) =
d

dt
< �ZN (t) > �N (2�p)=2 �Z2

N
(t)E�p :

Then

d

dt
N (p�2)=2 < MN (t) > �E�p =N (p�2)=2VN (t) �Z

�2
N

(t)

=N (p�2)=2VN (t) expf�2MN (t)+ < MN (t) >g:

Let us introduce the events

AN

a;b
:= f�MN (t) � a+ (b=2) < MN (t) > for all t � 0g:

Note that by an appropriate choice of a > 0 and b > 0, their probabilities can be made

arbitrarily close to 1. In fact, the process BN (t) =MN (St), where St = minfs j< MN (s) >=

tg, is a standard Brownian motion and MN (t) = BN (< MN (t) >). By the well-known fact

for Brownian motion

PfAN

a;b
g = Pf�BN (t) � a+ (b=2)t for all t � 0g � 1� expf�abg: (2:21)

We have: ����N (p�2)=2 d

dt
< MN (t) > �E�p

�
1IfAN

a;b
g

���
=N (p�2)=2jVN (t)j expf�2MN (t)+ < MN (t) >g1IfAN

a;b
g

�N (p�2)=2 expf2agjVN (t)j expf(1 + b) < MN (t) >g:

(2:22)
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Let us also introduce the function �b(x) := [1 � expf(1 + b)xg][1 + b]�1: Then by (2.22) for

all t � T

jN (p�2)=2�b(< MN (t) > �tN (2�p)=2
E�p )1IfAN

a;b
gj

=N (p�2)=2
��� tZ
0

� d

ds
< MN (s) > �N (2�p)=2

E�p
�
1IfAN

a;b
g

� expf�(1 + b)(< MN (s) > �sN (2�p)=2
E�p )gds

���
�N (p�2)=2

tZ
0

��� d
ds

< MN (s) > �N (2�p)=2
E�p

���1IfAN
a;b
g

� expf�(1 + b)(< MN (s) > �sN (2�p)=2
E�p )gds

�N (p�2)=2 expf2a+ TN (2�p)=2(1 + b)g
tZ

0

jVN (s)jds:

(2:23)

This yields

N (p�2)=2 sup
0�t�T

j�b(< MN (t) > �tN (2�p)=2
E�p )j1IfAN

a;b
g

�N (p�2)=2 expf2a+ TN (2�p)=2(1 + b)g
TZ
0

jVN (s)jds:
(2:24)

We will show in Proposition 2.2 that

lim
N"+1

N (p�2)=2
E jVN (t)j = 0

uniformly in t 2 [0; T ]. Consequently sup
N>1;t�T N

(p�2)=2
E jVN (t)j <1: Then by the domi-

nated convergence theorem

lim
N"+1

E
�
N (p�2)=2 sup

0�t�T
j�b(< MN (t) > �tN (2�p)=2

E�p )j1IfAN
a;b
g
�
= 0:

It follows that for all a; b > 0

N (p�2)=2 sup
0�t�T

j�b(< MN (t) > �tN (2�p)=2
E�p )j1IfAN

a;b
g ! 0 as N " +1

in probability. Then also N (p�2)=2 sup0�t�T j�b(< MN (t) > �tN (2�p)=2
E�p )j ! 1; as

N !1 since by (2.21) the probability of the events AN

a;b
can be made arbitrarily close to 1.

This last fact implies (2.20) and the lemma is proved.}

It remains to prove the following proposition.
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Proposition 2.2:Assume that T satis�es (2.19). Then

lim
N"+1

N (p�2)=2
E jVN (t)j = 0 (2:25)

uniformly in [0; T ].

Proof. It follows from (2.5) and the de�nition of VN (t) that

N (p�2)=2VN (t) =E�;�0
�
Np=2fp

�
RN (�; �

0)
�
� E�p

�
eHN (t;�)+HN (t;�0)�Nt:

By the Cauchy-Schwartz inequality:

N (p�2)=2
E jVN (t)j =E

���E� eHN (t;�)�Nt=2
E�0

�
Np=2fp

�
RN (�; �

0)
�
� E�p

�
eHN (t;�0)�Nt=2

���
�
h
EE � e

HN (t;�)�Nt=2
i1=2

�
h
EE � e

HN (t;�)�Nt=2
h
E�0

�
Np=2fp

�
RN (�; �

0)
�
� E�p

�
eHN (t;�0)�Nt=2

i2i1=2
=
h
E�;�0 ;�00

�
Np=2fp

�
RN (�; �

0)
�
� E�p

��
Np=2fp

�
RN (�; �

00)
�
� E�p

�
� exp

n
Nt
�
fp

�
RN (�; �

0)
�
+ fp

�
RN (�; �

00)
�
+ fp

�
RN (�(�

0; �00)
��oi1=2

:

Then it suÆces to prove that

WN(t) =E�;�0 ;�00
�
Np=2fp

�
RN (�; �

0)
�
� E�p

��
Np=2fp

�
RN (�; �

00)
�
� E�p

�
� exp

n
Nt
�
fp

�
RN (�; �

0)
�
+ fp

�
RN (�; �

00)
�
+ fp

�
RN (�(�

0; �00)
��o

tends to zero uniformly in [0; T ] as N " +1. We represent it as

WN(t) =
X

m1;m2;m32AN

�
Np=2fp(m1)� E�p

��
Np=2fp(m2)� E�p

�
eNt(fp(m1)+fp(m2)+fp(m3))

� Pf� � �0 = m1N; � � �00 = m2N; �
0 � �00 = m3Ng

where the set AN = A \ f0;�1=N;�2=N; : : : ;�1g3. A standard combinatorial calculation

yields

Pf� � �0 = m1N;� � �00 = m2N;�
0 � �00 = m3Ng

= 2�2N

�
N

N(1 +m1)=2

��
N(1 +m1)=2

N(1 +m1 +m2 +m3)=4

��
N(1�m1)=2

N(1 +m2 �m1 �m3)=4

�
:

(2:26)

By Stirling's formula we obtain

Pf� � �0 =m1N;� � �00 = m2N;�
0 � �00 = m3Ng

=
16 expf�NI(m1;m2;m3)gp

(2�)3N3
[(1 +m1 +m2 +m3)(1 �m1 �m2 +m3)]

�1=2

� [(1 +m1 �m2 �m2)(1 �m1 +m2 �m3)]
�1=2

�
1 +O

� 1

N

��
as N " +1;

(2:27)
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for any given m1;m2;m3 2 AN . Let us remark that

t(m
p

1 +m
p

2 +m
p

3) + (m2
1 +m2

2 +m2
3)=2� I(m1;m2;m3) = O

�
(jm1j+ jm2j+ jm3j)3

�
(2:28)

as m1;m2;m3 ! 0 uniformly in [0; T ]. Then for all suÆciently small � > 0 there exists a

constant h > 0 such that

sup
t2[0;T ]

�
t(m

p

1 +m
p

2 +m
p

3)� I(m1;m2;m3)
�
< �h(m2

1 +m2
2 +m2

3)=2 (2:29)

for all m1;m2;m3 2 A \ fjm1j + jm2j + jm3j < �g. Let us �x such a small � > 0 and an

arbitrary constant 0 < Æ < 1=6 and then split WN (t) into four terms:

WN(t) = I1
N
+ I2

N
(t) + I3

N
(t) + I4

N
(t);

where

I1
N
=

16p
(2�N)3

X
m1;m2;m32AN

jm1j+jm2j+jm3j<N�1=3�Æ

�
Np=2fp(m1)� E�p

��
Np=2fp(m2)� E�p

�
e�N(m2

1+m
2
2+m

2
3)=2

I2
N
(t) =

X
m1;m2;m32AN

jm1j+jm2j+jm3j<N�1=3�Æ

�
Np=2fp(m1)� E�p

��
Np=2fp(m2)� E�p

�

�
�
eNt(fp(m1)+fp(m2)+fp(m3))P(� � �0 = m1N; � � �00 = m2N; �

0 � �00 = m3N)

� 16p
(2�N)3

e�N(m2
1+m

2
2+m

2
3)=2

�
;

I3
N
(t) =

X
m1;m2;m32AN

jm1j+jm2j+jm3j>N�1=3�Æ
jm1j+jm2j+jm2j<�

�
Np=2fp(m1)� E�p

��
Np=2fp(m2)� E�p

�
eNt(fp(m1)+fp(m2)+fp(m3))

� P(� � �0 = m1N; � � �00 = m2N; �
0 � �00 = m3N);

I4
N
(t) =

X
m1;m2;m32AN

jm1j+jm2j+jm3j>�

�
Np=2fp(m1)� E�p

��
Np=2fp(m2)� E�p

�
eNt(fp(m1)+fp(m2)+fp(m3))

� P(� � �0 = m1N; � � �00 = m2N; �
0 � �00 = m3N):

We will prove that all four terms I1
N
; I2
N
(t); I3

N
(t); I4

N
(t) tend to zero uniformly in [0; T ] as

N " +1.

To show this for I1
N
, let us put m1

p
N = s1;m2

p
N = s2;m3

p
N = s3. Then

lim
N"+1

I1
N
= lim

N"+1

16p
(2�N)3

X
s1;s2;s3

=0;�1=
p
N;�2=

p
N;:::

js1j+js2j+js3j<N1=6�Æ

(s
p

1 � E�p )(s2
p
� E�p )e�(s21+s

2
2+s

2
3)=2

=
16p
(2�)3

1Z
�1

1Z
�1

1Z
�1

(xp � E�p )(yp � E�p )e�(x2+y2+z2)=2dxdydz = 0:
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To treat I2
N
(t), we rewrite it using (2.27) as

I2
N
(t) =

16p
(2�N)3

X
m1;m2;m32AN

jm1j+jm2j+jm3j<N�1=3�Æ

�
Np=2fp(m1)� E�p

��
Np=2fp(m2)� E�p

�
e�N(m2

1+m
2
2+m

2
3)=2

�
h
eN [t(fp(m1)++fp(m2)+fp(m3))+(m2

1+m
2
2+m

2
3)=2�I(m1;m2;m3)]

� [(1 +m1 +m2 +m3)(1�m1 �m2 +m3)]
�1=2

� [(1 +m1 �m2 �m3)(1�m1 +m2 �m3)]
�1=2

�
1 +O

� 1

N

��
� 1

i
:

(2:30)

Moreover, here O(1) is bounded uniformly in AN \ fjm1j + jm2j + jm3j < �g by Stirling's

formula. It follows from (2.28) that

lim
N"+1

sup
t2[0;T ]

jm1j+jm2j+jm3j<N�1=3�Æ

N jt(mp

1 +m
p

2 +m
p

3) + (m2
1 +m2

2 +m2
3)=2� I(m1;m2;m3)j = 0:

Then

lim
N"+1

sup
t2[0;T ]

jm1j+jm2j+jm3j<N�1=3�Æ

���eN [t(fp(m1)+fp(m2)+fp(m3))+(m2
1+m

2
2+m

2
3)=2�I(m1;m2;m3)]

� [(1 +m1 +m2 +m3)(1�m1 �m2 +m3)]
�1=2

� [(1 +m1 �m2 �m2)(1�m1 +m2 �m3)]
�1=2

�
1 +O

� 1

N

��
� 1

��� = 0;

while

lim
N"+1

16p
(2�N)3

X
m1;m2;m32AN

jm1j+jm2j+jm3j<N�1=3�Æ

����Np=2fp(m1)� E�p
��

Np=2fp(m2)� E�p
����e�N(m2

1+m
2
2+m

2
3)=2

= lim
N"+1

16p
(2�N)3

X
s1;s2;s3=0;�1=

p
N;:::

js1j+js2j+js3j<N1=6�Æ

����sp1 � E�p
��

s
p

2 � E�p
����e�(s21+s

2
2+s

2
3)=2

=
16p
(2�)3

1Z
�1

1Z
�1

1Z
�1

j(xp � E�p )(yp � E�p )je�(x2+y2+z2)=2dxdydz <1:

Thus I2
N
(t)! 0 uniformly in [0; T ] as N " +1.
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To estimate I3
N
(t), we rewrite it in the same way using (2.27):

I3
N
(t) =

16p
(2�N)3

X
m1;m2;m32AN

jm1j+jm2j+jm3j>N�1=3�Æ
jm1j+jm2j+jm3j<�

�
Np=2fp(m1)� E�p

��
Np=2fp(m2)� E�p

�

eN [t(fp(m1)+fp(m2)+fp(m3))�I(m1;m2;m3)]

� [(1 +m1 +m2 +m3)(1�m1 �m2 +m3)]
�1=2

� [(1 +m1 �m2 �m2)(1 �m1 +m2 �m3)]
�1=2

�
1 +O

� 1

N

��
(2:31)

Due to (2.29), there exists a constant h0 > 0 such that for all suÆciently large N

sup
t2[0;T ]

jm1j+jm2j+jm3j>N�1=3�Æ
jm1j+jm2j+jm3j<�

expf�N [t(m
p

1 +m
p

2 +m
p

3)� I(m1;m2;m3)]g

� sup
jm1j+jm2j+jm3j>N�1=3�Æ

jm1j+jm2j+jm3j<�

expf�Nh(m2
1 +m2

2 +m2
3)=2g � expf�h0N1=3�2Æg:

The sum X
m1;m2;m32AN

jm1j+jm2j+jm3j>N�1=3�Æ
jm1j+jm2j+jm3j<�

�
Np=2fp(m1)� E�p

��
Np=2fp(m2)� E�p

�

has polynomial growth as N " +1 and the uniform convergence I3
N
(t)! 0 in [0; T ] is proved.

Finally, let us consider I4
N
(t). By Stirling's formula there exists a constant C such that

for all (m1;m2;m3) 2 AN \ fjm1j+ jm2j+ jm3j > �g

Pf� � �0 = m1N;� � �00 = m2N;�
0 � �00 = m3Ng�C

p
Nexpf�NI(m1;m2;m3)g: (2:32)

Then by the assumption (2.19), for given T there exists a constant h00 > 0 such that

sup
t2[0;T ]

jm1j+jm2j+jm3j>�

expfNt(m
p

1 +m
p

2 +m
p

3)gPf� � �0 = m1N;� � �00 = m2N;�
0 � s00 =m3Ng

�C
p
N sup

t2[0;T ]

jm1j+jm2j+jm3j>�

expf�N [t(m
p

1 +m
p

2 +m
p

3)� I(m1;m2;m3)]g < C
p
N expf�h00Ng:

The remaining sum in this term has again polynomial growth, whence I4
N
(t) ! 0 uniformly

in [0; T ]. The lemma is proved.}

Remark. Let us note that the restriction (2.19) on T was essential only for the analysis

of the fourth term I4
N
(t). This means that the convergence N (p�2)=2

E jVN (t)j ! 0 breaks
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down for larger T only because of the con�gurations of spins with rather big correlations

� � �0 = m1, � � �00 = m2, �
0 � �00 = m3. To extend our result to the whole interval (2.10)

of admissible T , we need to reduce the contribution of these con�gurations into WN (t). For

that purpose we will follow the idea of M. Talagrand [T] to truncate the Hamiltonian.

Now we prove the statement of the previous lemma for all T satisfying (2.10).

Lemma 2.3: Let

T < inf
m1;m2;m32A

Y (m1;m2;m3):

Then

sup
0�t�T

j < N (p�2)=4MN (t) > �tE�p j ! 0 (2:33)

in probability.

Proof. Let us �x � > 0 such that for some constants h1; h2 > 0

sup
t2[0;T ]

m
p
1
+m

p
2
+m

p
3
<3�

�
t(m

p

1 +m
p

2 +m
p

3)� I(m1;m2;m3)
�
< �h1(m2

1 +m2
2 +m2

3) (2:34)

and

sup
t2[0;T ]

m1;m2;m32A
m
p
1
+m

p
2
+m

p
3
>3�

t
�
minfQp(m1;m2;m3; �); Lp(m1;m2;m3; �);

Lp(m1;m3;m2; �); Lp(m2;m3;m1; �)g
�
� I(m1;m2;m3) < �h2

(2:35)

where

Qp(m1;m2;m3; �) =[�9�2 + 6(1 + 2�)(m
p

1 +m
p

2 +m
p

3)][2(3 + 2m
p

1 + 2m
p

2 + 2m
p

3)]
�1;

Lp(m1;m2;m3; �) =
h
� 1�m

p

3 � (1 + �)2 + (1 + �)Sp(m1;m2;m3)

q
2 + 2m

p

3

+Rp(m1;m2;m3)(1 +m
p

3)
i
[1 +m

p

3]
�1:

Condition (2.34) is the same as (2.29) and, due to (2.28), for any given T > 0 it is possible to

�nd an appropriate � > 0 such that (2.35) is satis�ed. However, � > 0 ensuring (2.35) does

exist, if and only if T satis�es the assumption (2.10). The meaning of (2.35) will become

clear in the proof of a further Proposition 2.4. Let us introduceeVN (t; �) =E�;�0�Nfp

�
RN (�; �

0)
�
�N (2�p)=2

E�p
�
eHN (t;�)+HN (t;�0)�Nt

� 1IfHN (t;�)<(1+�)tN;HN (t;�0)<(1+�)tNg

�VN (t; �) =E�;�0
�
Nfp

�
RN (�; �

0)
�
�N (2�p)=2

E�p
�
eHN (t;�)+HN (t;�0)�Nt

� 1IfHN (t;�)>(1+�)tN; or HN (t;�0)>(1+�)tNg

=VN (t)� eVN (t; �):
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Let us also �x some T0 > 0 satisfying the assumption (2.19) of the previous lemma. Proceed-

ing along the lines of the proof of Lemma 2.1, we get for all t 2 [T0; T ]:

N (p�2)=2jFb(< MN (t) > �tN (2�p)=2
E�p )j1IfAN

a;b
g

� N (p�2)=2 expf2a+ T0N
(2�p)=2(1 + b)g

T0Z
0

jVN (s)jds

+N (p�2)=2 expf2a+ tN (2�p)=2(1 + b)g
tZ

T0

jeVN (s; �)jds
+N (p�2)=2

tZ
T0

j �VN (s; �)j �Z�2
N

(s) expf�(1 + b)(< MN (s) > �sN (2�p)=2)g1IfAN
a;�g ds:

Then
N (p�2)=2 sup

T0<t�T
jFb(< MN (t) > �tN (2�p)=2

E�p )j1IfAN
a;b
g

� N (p�2)=2 expf2a + T0N
(2�p)=2(1 + b)g

T0Z
0

jVN (s)jds

+N (p�2)=2 expf2a+ TN (2�p)=2(1 + b)g
TZ

T0

jeVN (s; �)jds
+N (p�2)=2 expfTN (2�p)=2(1 + b)g

TZ
T0

j �VN (s; �)j �Z�2
N

(s)ds:

It was proved in Lemma 2.1 that N (p�2)=2
E jVN (t)j ! 0 uniformly in [0; T0] as N " +1.

Proposition 2.4 shows that for � > 0 satisfying (2.34) and (2.35), N (p�2)=2
E jeV (t; �)j ! 0

uniformly in t 2 [T0; T ]. Proposition 2.5 proves that N (p�2)=2
E j �V (t; �)Z�2

N
(t)j ! 0 uniformly

in [T0; T ] for all � > 0. Then

lim
N"+1

E [ sup
T0�t�T

jN (p�2)=2Fb(< MN (t) > �tN (2�p)=2
E�p )j1IfAN

a;b
g] = 0:

Then sup0�t�T jN (p�2)=2Fb(< MN (t) > �tN (2�p)=2
E�p )j converges to zero in probability,

since the probability of the events AN

a;b
can be made arbitrarily close to 1 by (2.21). This

implies (2.33) and the proof of the lemma is complete.

Proposition 2.4:Assume that T > 0 satis�es (2.10). Let us �x 0 < � < 1=2 such that

(2.34) and (2.35) hold. Then for any T0 > 0, T0 < T :

lim
N"+1

N (p�2)=2
E jeVN (t; �)j = 0 (2:36)
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uniformly in t 2 [T0; T ].

Proof. Let us estimate N (p�2)=2
E jeVN (t; �)j by the Cauchy-Schwartz inequality as in the

proof of Proposition 2.2 for N (p�2)=2
E jVN (t)j. After that we split it into four terms:

N (p�2)=2
E jeVN (t; �)j �[EfWN (t; �)]1=2 = [eI1

N
(t; �)� eI2

N
(t; �) + eI3

N
(t; �) + eI4

N
(t; �)]1=2;

where

fWN (t; �) =EE �;�0 ;�00
�
Np=2fp

�
RN (�; �

0)
�
� E�p

��
Np=2fp

�
RN (�; �

00)
�
� E�p

�
� eHN (t;�)+HN (t;�0)+HN (t;�00)�3tN=2

� 1IfHN (t;�)<Nt(1+�);HN (t;�0)<Nt(1+�);HN (t;�00)<Nt(1+�)g

eI1
N
(t; �) =

X
m1;m2;m32AN

m
p
1
+m

p
2
+m

p
3
��2=4

�
Nfp(m1)�N (2�p)=2

E�p
��

Nfp(m2)�N (2�p)=2
E�p

�

� Pf� � �0 = m1N; � � �00 = m2N; �
0 � �00 = m3Ng

� EeHN (t;�)+HN (t;�0)+HN (t;�00)�3tN=2

eI2
N
(t; �) =

X
m1;m2;m32AN

m
p
1
+m

p
2
+m

p
3
<�2=4

�
Nfp(m1)�N (p�2)=2

E�p
��

Nfp(m2)�N (p�2)=2
E�p

�

� Pf� � �0 = m1N; � � �00 = m2N; �
0 � �00 = m3Ng

� E [eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2

� 1IfHN (t;�)�Nt(1+�) or HN (t;�0)�Nt(1+�); or HN (t;�00)�Nt(1+�)g]eI3
N
(t; �) =

X
m1;m2;m32AN

�2=4�mp
1
+m

p
2
+m

p
3
�3�

�
Nfp(m1)�N (2�p)=2

E�p
��

Nfp(m2)�N (2�p)=2
E�p

�

� Pf� � �0 = m1N; � � �00 = m2N; �
0 � �00 = m3Ng

� E [eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2

� 1IfHN (t;�)<Nt(1+�);HN (t;�0)<Nt(1+�);HN (t;�00)<Nt(1+�)g]eI4
N
(t; �) =

X
m1;m2;m32AN
m
p
1
+m

p
2
+m

p
3
>3�

�
Nfp(m1)�N (p�2)=2

E�p
��

Nfp(m2)�N (p�2)=2
E�p

�

� Pf� � �0 = m1N; � � �00 = m2N; �
0 � �00 = m3Ng

� E [eHN (t;�)+HN (t;�0)+HN (t;�00)�3tN=2

� 1IfHN (t;�)�Nt(1+�) or HN (t;�0)�Nt(1+�) or HN (t;�00)�Nt(1+�)g]:

We will prove the uniform convergence to zero in [T0; T ] as N " +1 of all these four terms.
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The �rst term eI1
N
(t) is not truncated and it refers to the con�gurations of spins with small

correlations m1, m2 and m3. The proof of its uniform convergence to zero in [T0; T ] relies

on (2.34) and it is completely analogous to the proof of the uniform convergence to zero of

the sum I1
N
+ I2

N
(t) + I3

N
(t) in the proof of Proposition 1. Therefore, we omit the details.

The second term eI2
N
(t) also contains only con�gurations of spins with very small cor-

relations. If these correlations were zero, i. e. if HN (t; �) HN(t; �
0) and HN(t; �

00) were

independent, then, indeed, the expectation involved in this term satis�es

E [eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=21If�g] � 3E [e
p
Nt��Nt=21If�>

p
Nt(1+�)g] � expf�Nt�2=2g

(� is a standard Gaussian) by a well-known estimate for Gaussian random variables (5.1).

We show that very small correlations m1, m2, m3 do not destroy the exponential convergence

to zero of the corresponding expectation. Considering the third term eI3
N
(t), we neglect the

truncation and use the asymptotic expansion (2.27) and condition (2.34). So we prove that

the expectation EeHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2 multiplied by the probability of any given

correlations goes to zero exponentially fast. Finally eI4
N
(t) refers to the con�gurations of

spins with rather big correlations. Here, applying the estimate (5.1), we bene�t from the

truncation. The choice of � > 0 according to (2.35) plays a crucial role in the analysis of this

term. (Remember that this choice was possible only for T satisfying (2.10)).

Now we proceed with the detailed proof. To treat the second term eI2
N
(t; �), we write

E [eHN (t;�)+HN (t;�)+HN (t;�00)�3Nt=21IfHN (t;�)>Nt(1+�) or HN (t;�0)>Nt(1+�) or HN (t;�00)>Nt(1+�)g]

= E [e
p
Nt(�1+�2+�3)�3Nt=2 1If�1>

p
Nt(1+�) or �2>

p
Nt(1+�) or �3>

p
Nt(1+�)g];

where �1, �2 and �3 are Gaussian random variables with zero mean, variance 1 and covari-

ances cov (�1; �2) = fp(RN (�; �
0)) = m

p

1, cov (�1; �3) = fp(RN (�; �
00)) = m

p

2, cov (�2; �3) =

fp(RN (�
0; �00)) = m

p

3, m
p

1 +m
p

2 +m
p

3 � �2=4. One gets

E [e
p
Nt(�1+�2+�3)�3Nt=21If�1>

p
Nt(1+�)g] =e

�3Nt=2
E
�
e
p
Nt�11If�1>

p
Nt(1+�)gE (e

�2+�3 j �1)
�

=eNt�3Nt=2
E [e

p
Nt(1+�)�11If�1>

p
Nt(1+�)g];

where  = 1 +m
p

3 � (m
p

1 +m
p

2)
2=2, � = m

p

1 +m
p

2. Since m
p

1 +m
p

2 � �2=4 < �, we may use

the estimate for standard Gaussian random variables (5.1). It implies

E [e
p
Nt(�1+�2+�3)�3Nt=21If�1>

p
Nt(1+�)g] �C1 expfNt(m

p

1 +m
p

2 +m
p

3 � (��m
p

1 +m
p

2)
2=2)g

�C1 expf�NT0�
2=8g
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for some constant C1 > 0, all t 2 [T0; T ] and all N > 0, if m
p

1+m
p

2+m
p

3 < �2=4, 0 < � < 1=2.

Thus

sup
0�mp

1
+m

p
2
+m

p
3
��2=4

E [eHN (t;�)+HN (t;�)+HN (t;�00)�3Nt=2

� 1IfHN (t;�)>Nt(1+�) or HN (t;�0)>Nt(1+�) or HN (t;�00)>Nt(1+�)g]

� 3C1 expf�NT0�
2=8g

for all t 2 [T0; T ]. Since the other terms in eI2
N
(t; �) have polynomial growth, the uniform

convergence eI2
N
(t; �)! 0 in [T0; T ] follows.

Let us turn to eI3
N
(t; �). By the expansion (2.27) and condition (2.35)

sup
�2=4�mp

1
+m

p
2
+m

p
3
�3�

E
�
eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2

� 1IfHN (t;�)<Nt(1+�);HN (t;�0)<Nt(1+�);HN (t;�00)<Nt(1+�)g]

� Pf� � �0 =m1N;� � �00 = m2N;� � �00 = m3Ng

� C2 sup
�2=4�mp

1
+m

p
2
+m

p
3
�3�

expfN [t(m
p

1 +m
p

2 +m
p

3)� I(m)]g

� C2 sup
m
p
1
+m

p
2
+m

p
3
��2=4

expf�h1N(m2
1 +m2

2 +m2
3)g � C2 expf�h1�4=pN=4g

for all t 2 [T0; T ], where C2 > 0, h1 > 0 are constants. All other terms in eI3
N
(t; �) have

polynomial growth, hence I3
N
(t; �)! 0 uniformly in [T0; T ].

Finally, consider eI4
N
(t; �). We have

E

h
eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2 1IfHN (t;�)<Nt(1+�);HN (t;�0)<Nt(1+�);HN (t;�00)<(1+�)Ntg

i
� E

h
e
p
Nt(3+2m

p
1
+2m

p
2
+2m

p
3
) ��3Nt=21If

p
3+2m

p
1
+2m

p
2
+2m

p
3
��3Nt(1+�)g

i
;

where � is a standard Gaussian,m1 = fp(RN (�; �
0)),m2 = fp(RN (�; �

00)),m3 = fp(RN (�
0; �00)).

Since m
p

1 +m
p

2 +m
p

3 > 3�, we may apply the estimate (5.2). It yields

E

h
eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2 1IfHN (t;�)<Nt(1+�);HN (t;�0)<Nt(1+�);HN (t;�00)<(1+�)Ntg

i
� C3 expfNtQp(m1;m2;m3; �)g;

for some constant C3 > 0, all t 2 [T0; T ], N > 0 and m
p

1+m
p

2+m
p

3 > 3�. On the other hand,



Fluctuations 23

we also have:

E

h
eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2 1IfHN (t;�)<Nt(1+�);HN (t;�0)<Nt(1+�);HN (t;�00)<(1+�)Ntg

i
� E

h
eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2 1IfHN (t;�0)<Nt(1+�);HN (t;�00)<Nt(1+�)g

i
= E

h
e
p
Nt�2+

p
Nt�3�3Nt=2

E(e
p
Nt�1 j �2; �3)1If�2<pNt(1+�);�3<

p
Nt(1+�)g

i
= e�Nt+Nt�

E

h
e
p
Nt(1+�2)�2+

p
Nt(1+�3)�31If�2<

p
Nt(1+�);�3<

p
Nt(1+�)g

i
� e�Nt+Nt�

E

h
e
p
Nt((1+�2)2+(1+�3)2+2m

p
3
(1+�2)(1+�3))�1If

p
2+2m

p
3
�<2

p
Nt(1+�)g

i
;

where �1, �2, �3 are the same as in the analysis of the second term, � is standard Gaussian

and
� =(2m

p

1m
p

2m
p

3 �m
2p
1 �m

2p
2 )=(2 � 2m

2p
3 )

�2 =(m
p

1 �m
p

2m
p

3)=(1 �m
2p
3 )

�3 =(m
p

2 �m
p

1m
p

3)=(1 �m
2p
3 ):

One checks that q
(1 + �2)2 + (1 + �3)2 + 2m

p

3(1 + �2)(1 + �3)

� 2(1 +m
p

3 + (m
p

1 +m
p

2)=2)p
2 + 2m

p

3

� 2(1 + 3�=2)p
2 + 2m

p

3

;

when m
p

1 +m
p

2 +m
p

3 > 3�. So, we are again in the position to apply (5.2). This yields

E

h
eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2 1IfHN (t;�)<Nt(1+�);HN (t;�0)<Nt(1+�);HN (t;�00)<(1+�)Ntg

i
� C4 expftNLp(m1;m2;m3; �)g;

where C4 > 0 is a constant. Permutingm1,m2 andm3, we can derive in the same way that the

same expectation does not exceed expftNLp(m1;m3;m2; �)g and expftNLp(m2;m3;m1; �)g
multiplied by some constant. Thus, taking into account (2.32), we obtain

sup
m
p
1
+m

p
2
+m

p
3
>3�

E
�
eHN (t;�)+HN (t;�0)+HN (t;�00)�3Nt=2

� 1IfHN (t;�)<Nt(1+�);HN (t;�0)<Nt(1+�);HN (t;�00)<Nt(1+�)g
�

� Pf� � �0 = m1N;� � �00 = m2N;� � �00 = m3Ng

� sup
m
p
1
+m

p
2
+m

p
3
>3�

C5

p
N exp

n
tN min

�
Qp(m1;m2;m3; �); Lp(m1;m2;m3; �);

Lp(m1;m3;m2; �); Lp(m2;m3;m1; �)
�
�NI(m1;m2;m2)

o
(2:37)

for all t 2 [0; T0], where C5 > 0 is a constant. Now the relevance of the assumption (2.35)

becomes clear. Due to (2.35), the right-hand side of (2.37) tends to zero exponentially fast,
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as one can estimate it by C5

p
N expf�h2Ng. The other terms in eI4

N
(t; �) have polynomial

growth. Thus I4
N
(t; �) " +1 uniformly in [T0; T ]. This concludes the proof of the proposition.

Proposition 2.5:For all T > 0 satisfying (2.10) and all � > 0

lim
N"+1

N (p�2)=2
E j �VN (t; �) �Z�2

N
(t)j = 0 (2:38)

uniformly in any interval [T0; T ], where 0 < T0 < T .

Proof. It follows from the de�nition of �VN (t) that

N (p�2)=2
E j �VN (t; �) �Z�2

N
(t)j � �CNE

E � e
HN (t;�)1IfHN (t;�)>Nt(1+�)g

E� eHN (t;�)
(2:39)

for all t � 0, where �C > 0 is a constant. We will show that the expectation of this last

fraction tends to zero exponentially fast. First of all, we observe that by (5.1)

EE � e
HN (t;�)1IfHN (t;�)>Nt(1+�)g

EE � eHN (t;�)
= EE � e

HN (t;�)�Nt=21IfHN (t;�)>Nt(1+�)g � e�Nt�
2
=2: (2:40)

Let us represent the fraction in the right-hand side of (2.39) as

E
E � e

HN (t;�)1IfHN (t;�)>Nt(1+�)g

E� eHN (t;�)

= E
E� e

HN (t;�)�Nt=21IfHN (t;�)>Nt(1+�)g

expfln E� eHN (t;�) � E ln E� eHN (t;�) + E ln E� eHN (t;�) �Nt=2g :
(2:41)

To expand this formula, we will use the concentration of measure as in (5.3). The random

variable E� e
HN (t;�) has the same distribution as �(J1; : : : ; JNp), where the function

�(x1; : : : ; xNp) = ln E� exp
np

tN1�p
X

i1;::: ;ip

xi1;i2;::: ;ip�i1�i2 � � � �ip
o

is de�ned on Z
N
p

, J1; : : : ; JNp are standard Gaussian random variables. The Lipschitz

constant of �(x1; : : : ; xNp) is at most
p
tN1�p

p
Np =

p
tN . Substituting this function and

u = Nt�2=4 into (5.3), we derive:

Pfj ln E� eHN (t;�) � E ln E� e
HN (t;�)j > Nt�2=4g � expf�Nt�4=32g: (2:42)

Let us introduce the events ON

t;�
:= fj ln E�eHN (t;�) � E ln E� e

HN (t;�)j > Nt�2=4g: Conse-
quently by (2.41) and (2.42)

E
E� e

HN (t;�)1IfHN (t;�)>Nt(1+�)g

E� eHN (t;�)

= E

1IfON
t;�g

E� e
HN (t;�)�Nt=21IfHN (t;�)>Nt(1+�)g

expfln E� eHN (t;�) � E ln E� eHN (t;�) + E ln E� eHN (t;�) �Nt=2g + PfON

t;�
g

� eNt�
2
=4
E
E � e

HN (t;�)�Nt=21IfHN (t;�)>Nt(1+�)g

expfE ln E� eHN (t;�) �Nt=2g + e�Nt�
4
=32

(2:43)
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Observe that for any T satisfying (2.10) and any 0 < T0 < T , there exists a constant K > 0

such that

�K
p
N < E ln E� e

HN (t;�) �Nt=2 � 0 (2:44)

for all t 2 [T0; T ]. The upper bound in (2.44) is immediate by Jensen inequality. Whenever

the second moment of �ZN (t) truncated is �nite, the left-hand side of (2.44) was established

by Talagrand [T1] in the analysis of the critical temperature. We will outline his proof in

our situation. For given T satisfying (2.10), let us �x e� > 0, such that (2.34) and (2.35) hold.

Let us de�ne after

�ZN (t;e�) = E� e
HN (t;�)�Nt=21IfHN (t;�)<Nt(1+e�)g

By (5.2) there exists a constant K1 < 0 such that

E �ZN (t;e�) � K1 (2:45)

for all t 2 [T0; T ]. Moreover, there exists a constant K2 > 0 such that

E �Z3
N
(t;e�) � K2 (2:46)

for all t 2 [T0; T ]. The proof of (2.46) is analogous to the proof of the uniform convergence

to zero of fWN (t; �) in Proposition 2. We decompose �ZN (t;e�) into four terms like it was forfWN (t; �). The last three of them go to zero uniformly in t 2 [T0; T ] and exponentially fast

by the same arguments as eI2
N
(t), eI3

N
(t) and eI4

N
(t) do. We work out the �rst term similarly

to the sum IN1 + IN2 (t) + IN3 (t) in Proposition 1. The only di�erence is that IN1 tends to the

integral along R
3 of the density of three independent standard Gaussians, which equals 1.

Thus, in fact, �ZN (t;e�) converges to 1 uniformly in [T0; T ] and (2.46) is obvious. Hence, for

all t 2 [T0; T ]

E �Z2
N
(t;e�)�

E �ZN (t;e�)�2 �
�
E �Z3

N
(t;e�)�2=3�

E �ZN (t;e�)�2 � K
2=3
2

K2
1

:= K3: (2:47)

Then starting from the Paley-Zygmund inequality and �nally applying the concentration of

measure inequality (5.3) with u = Nt=2� E ln E� e
HN (t;�) + ln(K1=2), we deduce

1=4K3 �
E �Z2

N
(t;e�)

4
�
E �ZN (t;e�)�2 � Pf �ZN (t;e�) > E �ZN (t;e�)=2g � PfE� eHN (t;�) > K1e

Nt=2=2g

= Pfln E� eHN (t;�) � E ln E� e
HN (t;�) > Nt=2� E ln E� e

HN (t;�) + ln(K1=2)g

� expf[Nt=2 � E ln E� e
HN (t;�) + ln(K1=2)]

2=2Ntg;
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from where (2.44) follows. Finally, (2.40), (2.43) and (2.44) together imply

E
E� e

HN (t;�)1IfHN (t;�)>Nt(1+�)g

E� eHN (t;�)

�eNt�
2
=4+K

p
N
EE � e

HN (t;�)�Nt=21IfHN (t;�)>Nt(1+�)g + e�Nt�
4
=32

�e�Nt
2
=4+K

p
N + e�Nt�

4
=32;

(2:48)

and the proposition is proved.}

Proof of (1.19). To complete the proof of Theorem 1.3, it remains to show that

lim
p"+1

inf
m1;m2;m32A

Yp(m1;m2;m3) = 2 ln 2: (2:49)

After elaborating the functions Sp(m1;m2;m3) and Rp(m1;m2;m3), we get:

Up(m1;m2;m3) =I(m1;m2;m3)(1 +m
p

3)

�
h�
4
�
1 +m

p

3 +
m
p

1 +m
p

2

2

�2
+

(m
p

1 �m
p

2)
2(1 +m

p

3)

(1�m
p

3)

�1=2
� (m

p

1 �m
p

2)
2

2(1�m
p

3)
�m

p

1m
p

2 � (2 +m
p

3)
i�1

:

(2:50)

It follows from (2.50) that for any p = 2k > 2 and any sequence (m1;n;m2;n;m3;n) 2 A such

that m1;n ! 1, m2;n ! 1, m3;n ! 1, as n!1,

lim
n"+1

Yp(m1;n;m2;n;m3;n) = 2 ln 2: (2:51)

(In fact, by the de�nition of A we have jjm1j � jm2jj � 1 � jm3j for all (m1;m2;m3) 2 A,
whence (m

p

1;n �m
p

2;n)
2 = o(1�m

p

3;n).) Thus

lim sup
p"+1

inf
m1;m2;m32A

Yp(m1;m2;m3) � 2 ln 2:

This fact and the next Proposition 2.6 together imply (2.49). }

Proposition 2.6:Let fpng be a sequence of positive even numbers, pn " +1. Assume that

the sequence (m1;n;m2;n;m3;n) 2 A satis�es one of the following conditions:

(i) jm1;nj ! 1, jm2;nj ! 1, jm3;nj ! 1;

(ii) there exist Æ > 0 and a pair i and j, i; j = 1; 2; 3, i 6= j, such that jmi;nj ! 1 and

jmj;nj � 1� Æ for all suÆciently large n;
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(iii) there exists Æ > 0 such that jm1;nj � 1�Æ, jm2;nj � 1�Æ, jm3;nj � 1�Æ for all suÆciently

large n. Then

lim inf
n"+1

Ypn(m1;n;m2;n;m3;n) � 2 ln 2: (2:52)

Proof: In the cases (i) and (iii) it suÆces to substitute the sequence (m1;n;m2;n;m3;n) into

the function I(m1;m2;m3)(2=3+(m
p

1+m
p

2+m
p

3)
�1). In case (ii) assume that e. g. jm3;nj ! 1

and jm1;nj � 1�Æ. Thenmpn

1;n = o(1). By de�nition of the set A we obtain jjm1;nj�jm2;njj �
1�jm3;nj ! 0 as n " +1, thus m

pn

2;n = o(1) and (m
pn

1;n�m
pn

2;n)
2=(1�mpn

3;n) = o(1). Moreover,

if m3;n ! 1, then m1;n �m2;n ! 0 and if m3;n ! �1, then m1;n +m2;n ! 0 and therefore

in both of these cases lim infn"+1 I(m1;n;m2;n;m3;n) � ln 2: This yields

lim inf
n"+1

Ypn(m1;n;m2;n;m3;n)

� lim inf
n"+1

Upn(m1;n;m2;n;m3;n) � lim inf
n"+1

ln 2
1 +m

pn

3;n

m
pn

3;n + o(1)
� 2 ln 2

and the proposition is proved. }

3. The uctuations of the partition function in the REM.

Amazingly enough, the simplest of all our models, the REM, will be seen to o�er in some

sense the most interesting behaviour with regard to the uctuations of the free energy. The

main surprise here will be the existence of an intermediate region of temperatures where a

CLT does not hold, but there a non-standard limit theorem will be proven.

We begin with the proof of (i) of Theorem 1.4.

Proposition 3.1:Whenever 0 � � <
p
ln 2=2,

e
N
2
(ln 2��2) ln

Z�;N

EZ�;N

D! N (0; 1): (3:1)

Proof. This result will follow from the standard CLT for triangular arrays. Let us �rst write

ln
Z�;N

EZ�;N
= ln

�
1 +

Z�;N � EZ�;N

EZ�;N

�
: (3:2)

We will show that the second term in the logarithm properly normalized will converge to a

normal random variable. To see this, write

Z�;N � EZ�;N

EZ�;N
=

X
�2SN

e�N(ln 2+�2=2)
�
e�
p
NX� � eN�

2
=2
�
�

X
�2SN

YN (�): (3:3)
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Note that EYN (�) = 0 and EY2
N
(�) = e�N(2 ln 2��2)[1� e�N�

2

] and thus

E

�Z�;N � EZ�;N

EZ�;N

�2
= e�N(ln 2��2)[1� e�N�

2

]: (3:4)

Therefore we can write

Z�;N � EZ�;N

EZ�;N
= e�

N
2
(ln 2��2)

p
1� e�N�2

1

2N=2

X
�2SN

eYN (�); (3:5)

where eYN (�) = e
N
2
(2 ln 2��2)[1 � e�N�

2

]�1=2YN (�) has mean zero and variance one. By the

CLT for triangular arrays (see [Shi]), it follows readily that

1

2N=2

X
�2SN

eYN(�) D! N (0; 1) (3:6)

if the Lindeberg condition holds, that is in this case if for any � > 0,

lim
N"+0

E eY2
N
(�)1IfjeYN (�)j��2N=2g = 0: (3:7)

But

E eY2
N
(�)1IfjeYN (�)j��2N=2g =

1p
2�(1� e�N�2)

e�2N�
2

1Z
p
N( ln 2

2� +�)+ ln �p
N�

+o( 1p
N
)

e2
p
N�z� z2

2 dz + o(1)

=
1p

2�(1� e�N�2)

1Z
p
N( ln 2

2� ��)+
ln �p
N�

+o( 1p
N
)

e�
z2

2 dz + o(1):

(3:8)

It is easy to check that the latter integral converges to zero if and only if �2 < ln 2=2. Using

now the fact that ex = 1+x+o(x) as x! 0, it is now a trivial matter to deduce the assertion

of the proposition. }

Since the Lindeberg condition clearly fails for 2�2 � ln 2, it is clear that we cannot expect a

simple CLT beyond this regime. Such a failure of a CLT is always a problem related to \heavy

tails", and results from the fact that extremal events begin to inuence the uctuations of

the sum. It appears therefore reasonable to separate form the sum the terms where X� is

anomalously large. For Gaussian r.v.'s it is well known that the right scale of separation is

given by uN (x) de�ned by

2N
1Z

uN (x)

dzp
2�

e�z
2
=2 = e�x (3:9)
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which (for x > � lnN= ln 2) is equal to (see e.g. [LLR])

uN (x) =
p
2N ln 2 +

xp
2N ln 2

� ln(N ln 2) + ln 4�

2
p
2N ln 2

+ o(1=
p
N); (3:10)

x 2 R is a parameter. Let us now de�ne

Zx

N;�
� E� e

�

p
NX�1IfX��uN (x)g: (3:11)

We may write

Z�;N

EZ�;N
= 1 +

Z
x

�;N
� EZx

�;N

EZ�;N
+
Z�;N � Zx

�;N
� E (Z�;N � Zx

�;N
)

EZ�;N
(3:12)

Let us �rst consider the last summand. We introduce the random variable

WN (x) =
Z�;N � Zx

�;N

EZ�;N
= e�N(ln 2+�2=2)

X
�2SN

e�
p
NX�1IfX�>uN (x)g (3:13)

It will be convenient to rewrite this as (we ignore the subleading corrections to uN (x) and

only keep the explicit representation (3.10))

WN (x) = e�N(ln 2+�2=2)
X
�2SN

e�
p
NuN (u

�1

N
(X�))1Ifu�1

N
(X�)>xg

= e�N(ln 2+�2=2)e
�N

p
2 ln 2�� ln(N ln 2)+ln 4�

2
p
2 ln 2

X
�2SN

e
�p
2 ln 2

u
�1

N
(X�)1Ifu�1

N
(X�)>xg:

(3:14)

Let us now introduce the point process on R given by

PN �
X
�2SN

Æ
u
�1

N
(X�)

: (3:15)

A classical result from the theory of extreme order statistics (see e.g. [LLR]) asserts that the

point process PN converges weakly to a Poisson point process on R with intensity measure

e�xdx. We can, of course, write

X
�2SN

e
�p
2 ln 2

u
�1

N
(X�)1Ifu�1

N
(X�)>xg =

1Z
x

e�zPN (dz); (3:16)

where we set � � �=
p
2 ln 2. Clearly, the weak convergence of PN to P implies convergence

in law of the right hand side of (3.16), provided that e�x is integrable on [x;1) w.r.t. the

Poisson process with intensity e�x. This is, in fact never a problem: the Poisson point

process has almost surely support on a �nite set, and therefore e�x always a.s. integrable.
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Note, however, that for � �
p
2 ln 2 the mean of the integral is in�nite, indicating the passage

to the low temperature regime. Note also that the variance of the integral is �nite exactly

if � < 1=2, i.e. �2 < ln 2=2, i.e. when the CLT holds. On the other hand, the mean of the

integral diverges if x # 1; note that at minus in�nity the points of the Poisson point process

accumulate, and there is no �nite support argument as before that would assure the existence

if x is taken to �1. The following lemma provides the �rst step in the proof of part (ii) of

Theorem 1.4 and of Theorem 1.5:

Lemma 3.2: Let WN (x); � be de�ned above, and let P be the Poisson point process with

intensity measure e�zdz. Then

e
N
2
(
p
2 ln 2��)2+�

2
[ln(N ln 2)+ln 4�]WN (x)

D!
1Z
x

e�zP(dz): (3:17)

Remark: Note that the mean of the right hand side is �nite if and only of � <
p
2 ln 2. Thus

only in that case does this lemma also allow to deal with the centered variable appearing in

(3.12).

We now need to turn to the remaining term,

Zx

�;N
� EZx

�;N

EZ�;N
=
VN (x)
EZ�;N

; (3:18)

where

VN (x) � Zx

�;N
� EZx

�;N
: (3:19)

One might �rst hope that this term upon proper scaling would converge to a Gaussian;

however, one can easily check that this is not the case (the Lindeberg condition will not be

veri�ed). However, it will not be hard to compute all moments of this term:

Lemma 3.3: Let VN (x) be de�ned by (3.19). Then for � > 1=2 and any integer k � 2

lim
N"+1

E [VN (x)]kh
2�NeN�

p
2 ln 2��

2
[ln(N ln 2)+ln 4�]

ik =

kX
i=1

1

i!

X
`1�2;:::;`i�2P

j
`j=k

k!

`1! : : : `i!

e(k��i)x

(`1�� 1) : : : (`i�� 1)
:

(3:20)

For � = 1=2, we have for k even

lim
N"+1

E [VN (x)]kh
2�NeN�

p
2 ln 2

ik =
k!

(k=2)! 2k
=

(k � 1)!!

2k=2 (3:21)
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and for k odd

lim
N"+1

E [VN (x)]kh
2�NeN�

p
2 ln 2

ik = 0 (3:22)

(which are the moments of the normal distribution with variance 1=2).

Proof. This is a pure computation. Set TN (�) � e�
p
NX�1IfX��uN (x)g. Note that for

� <
p
2 ln 2

ETN (�) =

uN (x)Z
�1

dzp
2�

e�
z2

2
+�

p
Nz = eN�

2
=2
�
1�

1Z
uN (x)��

p
N

dzp
2�

e�
z2

2

�
� e�

2
N=2: (3:23)

while for � >
p
2 ln 2 and all k � 1, and for � >

p
ln 2=2 and for k � 2,

E [TN (�)]k =

uN (x)Z
�1

dzp
2�

e�
z2

2
+k�

p
Nz = eNk

2
�
2
=2

uN (x)�k�
p
NZ

�1

dzp
2�

e�
z2

2

� eNk
2
�
2
=2 e�(uN (x)�k�

p
N)2=2

p
2�(k�

p
N � uN (x))

� 2�Ne�x

k�� 1
ek[�

p
2 ln 2N+�x��

2
[ln(N ln 2)+ln 4�]]:

(3:24)

Formula (3.24) is also valid for � =
p
2 ln 2 with k > 1 and for � =

p
ln 2=2 with k > 2.

It is easy to see from the computations above that for � =
p
2 ln 2 with k = 1 and also for

� =
p
ln 2=2 with k = 2 we have

E [TN (�)]k � ek
2
�
2
N=2

2
=

2�Ne�x

2
ek[�

p
2 ln 2N+�x]: (3:25)

We set eTN (�) � 2�NTN (�); by (3.24) we get for � >
p
ln 2=2 with k � 2 and also for

� >
p
2 ln 2 with k � 1

E [ eTN (�)]k =
2�Ne�x

k�� 1
ek[�

p
2 ln 2N�ln 2+�x��

2
[ln(N ln 2)+ln 4�]]: (3:26)

This formula is also true for � =
p
ln 2=2, k > 2 and � =

p
2 ln 2, k > 1. For � =

p
2 ln 2

and k = 1 and also for � =
p
ln 2=2 and k = 2 by (3.25)

E [ eTN (�)]k =
2�Ne�x

2
ek[�

p
2 ln 2N�ln 2+�x]: (3:27)

Now

E [VN (x)]k = E

� X
�2SN

[ eTN (�)� E eTN (�)]
�k

=
X

�1;:::;�k2SN

E

kY
i=1

� eTN (�i)� E eTN (�i)
�

=

kX
i=1

X
`1;:::;`i�2P

j
`j=k

k!

`1! : : : `i!

�
2N

i

�
E [ eTN (�)� E eTN (�)]`1 : : : E [ eTN (�) � E eTN (�)]`i :

(3:28)
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Note �nally that for l � 2 and � �
p
ln 2=2

E
� eTN (�)� E eTN (�)

�`
=

`X
j=1

(�1)j
�
`

j

�
E eTN (�)`�j [E eTN (�)]j � E eTN (�)`: (3:29)

In fact, if
p
ln 2=2 � � <

p
2 ln 2, l � 2, j � 1, j 6= l � 1; l, then by (3.23) and (3.26), (3.27)

E [T
l�j
N

(�)][ETN (�)]j

E [T l

N
(�)]

== eNj(�2=2��
p
2 ln 2))O

�
N�j=2

�
(3:30)

For l � 2, j = l � 1; l

E [T
l�j
N

(�)][ETN (�)]j

E [T l

N
(�)]

eNl(�2=2��
p
2 ln 2)+N ln 2O

�
N�l=2

�
� e�N ln 2=2)N� (3:31)

For � �
p
2 ln 2, l � 2 and j � 1 by (3.26) and (3.27)

E [T
l�j
N

(�)][ETN (�)]j

E [T l

N
(�)]

= O(2�Nj): (3:32)

Thus for l � 2 and � >
p
ln 2=2 and also for l � 3 and � =

p
ln 2=2

E
� eTN (�)� E eTN (�)

�`
=

2�Ne�x

k�� 1

�
2�NeN�

p
2 ln 2e�xe�

�
2
[ln(N ln 2)+ln 4�]

�`
: (3:33)

Inserting this result into (3.28) gives the assertion of the lemma (3.20).

For � =
p
ln 2=2 and l = 2 by (3.27) we have

E
� eTN (�) � E eTN (�)

�2
=

2�Ne�x

2

�
2�NeN�

p
2 ln 2e�x

�2
: (3:34)

Inserting this formula into (3.28) we see, that the term with l1; : : : ; li = 2, i = k=2 brings the

main contribution to the sum, and all others are of smaller order, because of the polynomial

terms e�l
�
2
ln(N ln 2) in (3.33). This implies (3.21) and (3.22) and the lemma is proved. }

Remark: One sees that if we let x # �1, and rescale properly, the corresponding moments

converge to that of a centered Gaussian r.v. This could alternatively be seen by checking

that the Lindeberg condition holds for the truncated variables provided x � �2 ln ln 2N .

A standard consequence of Lemma 3.3 is the weak convergence of the normalized version

of VN (x):
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Corollary 3.4: For
p
ln 2=2 < �,

e
N
2
(
p
2 ln 2��)2+�

2
[ln(N ln 2)+ln 4�] VN (x)

EZ�;N

D! V(x; �); (3:35)

where V(x; �) is the random variable with mean zero and kth moments given by the right

hand side of (3.20). For � =
p
ln 2=2

p
2e

N
2
(
p
2 ln 2��)2 VN (x)

EZ�;N

D! N (0; 1): (3:36)

The next proposition will imply (ii) of Theorem 1.4.

Proposition 3.5:Let
p
ln 2=2 < � <

p
2 ln 2. Then for x 2 R chosen arbitrarily,

e
N
2
(
p
2 ln 2��)2+�

2
[ln(N ln 2)+ln 4�] ln

Z�;N

EZ�;N

D! V(x; �) +
1Z
x

e�zP(dz) �
1Z
x

e�ze�zdz; (3:37)

where V(x; �) and P are independent random variables.

Proof. (3.37) would be immediate from Lemma 3.2 and Corollary 3.4, if WN (x) and VN (x)
were independent. However, while this is not true, they are not far from independent. To

see this, note that if we condition on the number of variables X�, nN(x), that exceed uN (x),

the decomposition in (3.12) is independent. On the other hand, one readily veri�es that

Corollary 3.4 also holds under the conditional law P[�jnN (x) = n], for any �nite n, with the

same right hand side V(x; �). But this implies that the limit can be written as the sum of

two independent random variables, as desired. }

Since for �2 > ln 2=2, � > 1=2, one sees that EV(x; �)2 = ex(2��1)=(2� � 1) tends to zero

as x # �1. Therefore we see that

V(x; �) =D lim
y"+1

xZ
�y

e�zP(dz) �
xZ

�y

e�ze�zdz (3:38)

which means that we can give sense to the Poisson integral
R1
�1 e�z(P(dz) � e�zdz) We see

that Propositions 3.1 and 3.5 imply Theorem 1.4. }}

Remark: The appearance of the intermediate region with non-Gaussian uctuations may

appear surprising in view of the fact that in the p-spin models, we could prove the CLT up

to a much higher value of �, in fact up to almost the critical value. The reason, however,

lies in the fact that in the p-spin model the Gaussian part of the uctuation is always on a
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polynomial scale in N , while the truncation error ((Z�;N � ZT

�;N
)=EZ�;N ) is exponentially

small even when we truncate at �(1+ �)
p
N , way below where we truncate in the REM. This

means that the CLT contribution will always dominate the extremal uctuations. In the

REM everything is exponentially small, and while a suÆciently truncated partition function

gives a Gaussian contribution, this is dominated by the larger extremal uctuations in the

intermediate regime. In other words, the extra correlations in the p-spin models strengthen

the Gaussian uctuations more than the extremal ones which sounds intuitive.

We now turn to the

Proof of Theorem 1.5. We will see that the computions above almost suÆce to conclude

the low temperature case as well. With the notations from above, we write

Z�;N = Zx

�;N
+ (Z�;N � Zx

�;N
) (3:39)

Clearly for � �
p
2 ln 2

Z�;N � Zx

�;N
= eN[�

p
2 ln 2�ln 2]��

2
[ln(N ln 2)+ln 4�]

X
�2SN

1Ifu�1

N
(�)>xge

�u
�1

N
(X�) (3:40)

so that for any x 2 R,

(Z�;N � Zx

�;N
)e�N[�

p
2 ln 2�ln 2]+�

2
[ln(N ln 2)+ln 4�] D!

1Z
x

e�zP(dz): (3:41)

Now write

Zx

�;N
= EZx

�;N

�
1 +

Zx

�;N
� EZx

�;N

EZx

�;N

�
: (3:42)

Let us �rst treat the case � >
p
2 ln 2. By (3.24) we have

EZx

�;N
� 2�Ne�x

�� 1
e�
p
2 ln 2N+�x��

2
[ln(N ln 2)+ln 4�]: (3:43)

Thus

e�N[�
p
2 ln 2�ln 2]+�

2
[ln(N ln 2)+ln 4�]Zx

�;N
=

ex(��1)

�� 1

�
1 +

Zx

�;N
� EZx

�;N

EZx

�;N

�
(1 + o(1)): (3:44)

Using Lemma 3.3 we see that now
Z
x
�;N�EZ

x
�;N

EZx
�;N

e
x(��1)

��1
converges in distribution to a random

variable with moments given by the right hand side of (3.20). Moreover, as x # �1, this

variable converges to zero in probability. Since the same is true for the prefactor, the assertion

of the theorem is now immediate.
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Let us consider now the case � =
p
2 ln 2. Proceeding as in (3.24),

EZ0
�;N

=
2Np
2�

uN (0)�
p
2N ln 2Z

�1

e�z
2
=2dz = 2N

�1
2
� ln(N ln 2) + ln 4�

4
p
N� ln 2

+O
� (lnN)2

N

��
: (3:45)

We use the decomposition

Z�;N = Z�;N � Z0
�;N

+ EZ0
�;N

+ (Z0
�;N

� EZ0
�;N

): (3:46)

By (3.45), EZ0
�;N

=EZ�;N � 1=2. By (3.14), we see easily that

Z�;N � Z0
�;N

EZ�;N
=WN (x)! 0 a.s. (3:47)

even though EWN (0) = 1=2! Thus the more precise statement consists in saying that

e
1
2
[ln(N ln 2)+ln 4�]WN(0)

D!
1Z
0

ezP(dz): (3:48)

Note that of course the limiting varaible has in�nite mean, but is a.s. �nite. Finally, by

Corollary 3.4,

e
1
2
[ln(N ln 2)+ln 4�]

Z0
�;N

� EZ0
�;N

EZ�;N

D! V(0; 1) (3:49)

The same arguments as those given after Proposition 3.5 allow us to identify V(0; 1) with

the Centered Poisson integral
R 0

�1 ez (P(dz) � e�zdz) : This implies (1.24). (1.25) is an

immediate corollary. This concludes the proof of Theorem 1.5.}}

Appendix 1. Some remarks on the case p odd

Conjecture 4.1:Let p = 2k + 1, k � 1. There exists �p > 0 such that for all � < �p

N (p�2)=2 ln
Z�;N

EZ�;N
!M1(

p
�) (4:1)

in distribution as N " +1, where M1(t) is a centred Gaussian process with independent

increments and

E (M1(t)�M1(s))2 =
(t2 � s2)[(2p � 1)!!]

2
;

Moreover �p !
p
2 ln 2; as p " +1.

Discussion. Let us try to adapt the martingale method in this case. This leads to

VN (t) =E�;�0
�
N
�
RN (�; �

0)
�p
�N2�ptE�2p

�
eHN (t;�)+HN (t;�0)�Nt:
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Then

Np�2
EVN (t) =

X
m=0;�1=N;::: ;�1

�
Np�1mp � tE�2p

�
etNm

p

P(� � �0 = mN): (4:2)

It is easy to show thatNp�2
EVN (t)! 0 asN " +1 for all t such that t < inf0<m<1 �(m)m�p:

As in the proof for p even, we can concentrate only on con�gurations of spins with corre-

lations m close to zero, since others bring an exponentially small contribution. Note that

P(� � �0 = mN) = P(� � �0 = �mN) and consequently I(m) = I(�m) = �m2=2(1 + o(1)),

m! 0. Summing up the terms in (4.2) with correlations m and �m, we get

Np�2
EVN (t) =

2p
2�N

X
m�0;

jmj<N�1=3�Æ

Np�1mp(etNm
p � e�tNm

p

)e�NI(m) � 2tE�2p + o(1)

=
4p
2N�

X
m�0;

jmj<N1=3�Æ

Np�1mp
�
tNmp

�
(1 + o(1))e�NI(m) � 2tE�2p + o(1)

=
4tp
2�

1Z
0

s2pe�s
2
=2ds� 2tE�2p + o(1)! 0; N " +1:

Moreover, as for p even, it is also not diÆcult to show that the truncated valueN (p�2)
E eVN (t; �)

tends to zero for all t up to Talagrand's bound (2.16).

Let us now try to perform a rigorous proof of Conjecture 4.1. Proceeding along the lines

of the proof for p even, we come to the problem of convergence Np�2
E jVN (t)j ! 0: To get

rid of the absolute value of VN (t), let us �rst apply the Cauchy-Schwartz inequality in the

same way as it was in the proof of Proposition 2.2. We obtain�
N (p�2)

E jVN (t)j
�2 � X

m1;m2;m3

(Np�1m
p

1 � tE�p )(Np�1m
p

2 � tE�p )eNt(m
p
1
+m

p
2
+m

p
3
)

� P(� � �0 = m1N;� � �00 = m2N;�
0 � �00 = m3N):

(4:3)

Surprisingly, the right-hand side of (4.3) does not converge to zero. The problem arises from

the fact that

I(m1;m2;m3) = I(�m1;�m2;m3) = I(m1;�m2;�m3) = I(�m1;m2;�m3);

but

I(m1;m2;m3) 6= I(m1;m2;�m3):

In fact, opening the brackets in (Np�1m
p

1 � tE�2p )(Np�1m
p

2 � tE�2p ) one can split the right-

hand side of (4.3) into four terms. Let us elaborate the �rst one summing up together
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the terms with correlations, having the same absolute values jm1j; jm2j; jm3j and the same

probability:

(2�N)�3=2
X

m1>0;m2>0;m3>0

N (2p�2)m
p

1m
p

2 e
�NI(m1;m2;m3)

�
etN(m

p
1
+m

p
2
+m

p
3
) + etN(�mp

1
�mp

2
+m

p
3
) � etN(�mp

1
+m

p
2
�mp

3
) � etN(m

p
1
�mp

2
�mp

3
)
�

+ (2�N)�3=2
X

m1>0;m2>0;m3>0

N (2p�2)m
p

1m
p

2 e
�NI(m1;m2;�m3)

�
etN(m

p
1
+m

p
2
�mp

3
) + etN(�mp

1
�mp

2
�mp

3
) � etN(�mp

1
+m

p
2
+m

p
3
) � etN(m

p
1
�mp

2
+m

p
3
)
�

= 4(2�N)�3=2t
X

m1>0;m2>0;m3>0

N2p�1m
p

1m
p

2m
p

3(1 + o(1)) e�N(m2
1+m

2
2+m

2
3)=2

[e�NI(m1;m2;m3)+N(m2
1+m

2
2+m

2
3)=2 � e�NI(m1;m2;�m3)+N(m2

1+m
2
2+m

2
3)=2]

+ t2(E�2p )2 + o(1):

This term is of order N (p�3)=2t(E�p+1 )3(1 + o(1)) + t2E�2p , since in the expansion of

[e�NI(m1;m2;m3)+N(m2
1+m

2
2+m

2
3)=2 � e�NI(m1;m2;�m3)+N(m2

1+m
2
2+m

2
3)=2];

the main term is of order Nm1m2m3. The sum of all other three terms in (4.3) tends to

�t2(E�2p )2: Thus the right-hand side of (4.3) is of order N (p�3)=2t(E�p+1 )3 and it does not

converge to zero for N " +1. Therefore the proof for p even is not suitable at this point for

p odd.

A possible solution for this problem is to apply the Cauchy-Schwartz inequality in a dif-

ferent way passing to the fourth moment of ZN (t):�
N (p�2)

E jVN (t)j
�2 � EE �;�0 ;�00;�000

�
Np�1

�
RN (�; �

0)
�
� tE�2p

���00 � �000
N

�
� tE�2p

�
� eHN (t;�)+HN (t;�0)+HN (t;�00)+HN (t;�000)�2Nt:

It can be proved that the right-hand side of this last inequality tends to zero for all t up to

some bound. But technical details are very tedious. We will only say that six parameters

m1; : : : ;m6 have to be considered. The group of 64 correlations with �xed absolute values

jm1j; : : : ; jm6j splits into eight groups of correlations having the same probabilities.

Furthermore, it will be technically even much harder to extend the bound of t by the

truncation of the Hamiltonian. We will have to take into account �ve di�erent cases and

their permutations where some of correlations are large and some are small. Each of these

cases will require very tough computations.
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Appendix 2. Two useful theorems

Proposition 5.1:Let � be a Gaussian random variable with E� = 0, E�2 = 1. Then for all

a; b > 0

E [expfa�g1If�>bg] �
1p

2�(b� a)
expf�b2=2 + abg; if b > a; (5:1)

E [expfa�g1If�<bg] �
1p

2�(a� b)
expf�b2=2 + abg; if b < a: (5:2)

Theorem 5.2: Assume that f(x1; : : : ; xd) is a function on Rd with a Lipschitz constant

L. Let J1; : : : ; Jd be independent standard Gaussian random variables. Then for any u > 0

Pfjf(J1; : : : ; Jd)� Ef(J1 ; : : : ; Jd)j > ug � expf�u2=(2L2)g: (5:3)
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