17 research outputs found

    Frequency of hyperglycemia and polymorphism of TNF and TP53 genes in patients with acute pancreatitis, chronic pancreatitis, pancreatic cancer

    Get PDF
    BACKGROUND: Β«The vicious circleΒ» of associations of diabetes mellitus (DM) with pancreatic pathology, when pancreatic diseases can initiate DM, and type 2 DM β€” cause functional and organic pancreatic pathology, determines the search for possible associations. Some studies have established a relationship between TNF or TP53 polymorphisms with DM or with pancreatic diseases.AIMS: to determine and compare fasting plasma glucose and the frequency of hyperglycemia in patients with acute pancreatitis (APp), chronic pancreatitis (CPp), pancreatic cancer (PCp) depending on gender, etiology or stage of the disease, polymorphism -308G/A TNF gene in all patients, and polymorphism 72Arg/Pro gene TP53 in PCp..MATERIALS AND METHODS: At the observational multicenter clinical cross-sectional uncontrolled case-study 44 APp, 97 CPp and 45 PCp were examined; the groups were comparable by sex/age. Informed consent form for participate in the study was obtained from all patients. The main outcome of the study: frequency of hyperglycemia in APp, CPp, PCp, considering the polymorphism TNF and TP53 genes.Β RESULTS: The lowest age-standardized fasting plasma glucose (FPG) was found in CPp (6,2Β±0,2 mmol/l) than in APp (6,7Β±0,2 mmol/l, p=0,041). In PCp (6,6Β±0,2 mmol/l), the average levels of FPG did not differ substantially when compared with APp (p=0,749) or CPp (p=0,092). In APp, the norm of GP was detected less frequently (31,8%) than in CPp (54,6%, Ο‡2 =6,3, p=0,012), and the frequency of the norm of GP in PCp (48,9%) did not differ with that in APp or CPp. The frequency of FPGβ‰₯6,1<7,0 mmol/l did not differ in APp (20,5%), CPp (9,3%) or PCp (17,8%). The frequency of FGPβ‰₯7.0 mmol/l did not differ in APp CPp and PCp: 47,7, 36,1, 33,3%. Logistic regression analysis revealed a tendency for an increased chance of having stage 3–4 PC with FPGβ‰₯7,0 mmol/l (Exp (B)=3,205 95%CI 0,866–11,855, p=0,081) in PCp, but not in patients with pancreatic necrosis or β€œdefiniteΒ» Π‘P.The frequencies of G/G (71,4, 74,7, 76,2%), G/A (26,2, 24,1, 23,8%) of TNF genotypes did not differ in APp, CPp or PCp, p>0,05. In PCp genotypes Arg/Arg, Arg/Pro, Pro/Pro polymorphism gene 72Arg/Pro TP53 in 2,4, 35,7, 61,9% of cases. No associations of GPβ‰₯7,0 mmol/l with TNF polymorphism in APp, CPp, PCp and with TP53 polymorphism in PCp were obtained.CONCLUSIONS: The frequency of FGPβ‰₯7,0 mmol/l did not differ for various pancreatic disease and was not associated with the risk of pancreatic necrosis and β€œdefined” CP. The -308G/A polymorphism TNF gene did not differ in APp, CPp or PCp and was not associated with impaired carbohydrate metabolism. The 72Arg/Pro polymorphism TP53 gene in PCp was not associated with impaired carbohydrate metabolism

    Molecular genetic markers of myocardial infarction in combination with type 2 diabetes

    Get PDF
    Aim. To study associations of rs2464196 and rs11212617 polymorphisms with the development of myocardial infarction (MI) in combination with type 2 diabetesΒ  (T2D).Material and methods. The study included two groups: main group (n=115) β€” patients with prior myocardial infarction and T2D, comparisonΒ  group (n=116) β€” patients with myocardialΒ  infarction without T2D, hospitalizedΒ  from December 1, 2018 to DecemberΒ  31, 2019 at the Regional Vascular Center β„– 1 of the City Clinical Hospital β„– 1. Participants were comparable in sex and age. Patients underwentΒ  clinical and instrumental investigations,Β  a genetic test for single nucleotide polymorphisms, which showed associations with the developmentΒ  of MI and T2D according to genome-wideΒ  association study (GWAS): rs2464196 of the HNF1AΒ  gene, rs11212617 of the ATM gene.Results. Carriage of the AA genotype of the HNF1AΒ  rs2464196 polymorphism was found to be associated MI in combination with T2D in the general group (oddsΒ  ratio (OR), 3,180, 95% confidence interval (CI), 1,206-8,387, p=0,015). After division of the group by sex, significant differencesΒ  remained only in women (OR=9,706, 95% CI, 1,188-79,325, p=0,011).Conclusion. The data obtained can make it possible to identify a priority group of patients for personalized prevention of cardiovascular diseases

    Study of the association of rs3746444 of the MIR499A gene and rs6922269 of the MTHFD1L gene with progressive atherosclerosis in patients with coronary heart disease

    Get PDF
    The aim of the study is to evaluate the association of some molecular genetic markers with progressive atherosclerosis. Material and methods. In total, the study included 202 patients (147 men and 55 women), who were divided into 2 groups. The 1st (main) group included patients with coronary artery disease (100 people) who had a combination of two or more cardiovascular events during the last 2 years before inclusion: myocardial infarction or unstable angina pectoris, arterial stenting for urgent indications (coronary and peripheral), stroke; acute ischemia, thrombosis or amputation of the lower extremities. The 2nd group (comparisons) included 102 patients with coronary artery disease who did not have any of the above cardiovascular events during the last 2 years before inclusion. DNA was isolated from peripheral blood samples by phenol-chloroform extraction. Results. In the group with progressive atherosclerosis at the age of 55 years and older, the AA rs3746444 genotype of the MIR499A gene was absent in both men and women, while in the control group its frequency reached 8.3 % (p = 0.044). The odds ratio of detecting the carriage of the heterozygous genotype AG of the rs6922269 polymorphism of the MTHFD1L gene in the group with progressive atherosclerosis is 0.5 times lower compared to the control group (95 % confidence interval 0.3–0.9; p = 0.034). Conclusions. Carrying the AA genotype rs3746444 of the MIR499A gene is a conditionally protective factor against the development of progressive atherosclerosis at the age of 55 years and older. Carrying the AG genotype of the rs6922269 polymorphism of the MTHFD1L gene is associated with a reduced likelihood of developing progressive atherosclerosis in patients with CAD

    Ассоциация ΠΎΠ΄Π½ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Π³Π΅Π½Π° NOS1AP с Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° QT

    Get PDF
    Highlights. The association of single nucleotide polymorphic variants rs12143842 and rs4657139 of the NOS1AP gene with the duration of the QT interval was found in men of the Siberian population.Aim. To study the association of single nucleotide variants rs12143842 and rs4657139 of the NOS1AP gene with the duration of the QT interval.Methods. The study sample of men (1353 people) aged 25–69 years was formed from the DNA bank of participants in the international HAPIEE project and screening of young people 25–44 years old, residents of Novosibirsk. From each age subgroup (25–29, 30–34, …, 65–69 years old), about 10–15% of men with the shortest, average and longest QT interval were selected and the corresponding groups were formed. Genotyping of rs4657139 was carried out using PCR with RFLP (polymerase chain reaction followed by restriction fragment length polymorphism analysis). Genotyping rs12143842 – using RT-PCR (real-time polymerase chain reaction).Results. At the age of over 50 years, the CC genotype rs12143842 was detected in 66.1% of men in the group with a short and average QT interval and in 50.6% in the group with a long QT interval, while the TT genotype prevailed in the group with a long QT interval, 10, 8% of cases (odds ratio (OR) = 3.345, 95% confidence interval (CI) 1.149–9.739, p = 0.02). The homozygous TT genotype rs4657139 was more common in the long QT group, in 20.1% of cases, while the AA and AT genotypes predominated in the short, average QT groups (p = 0.041). A similar trend persists when separating by age in people over 50 years of age (p = 0.031) and when comparing genotype frequencies in the long and average QT groups in the model TT vs AA + AT & long QT vs short + average QT (p = 0.003).Conclusion. Single nucleotide variants rs12143842 and rs4657139 of the NOS1AP gene are associated with the duration of the QT interval in male residents of Novosibirsk.ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ полоТСния. Π£ ΠΌΡƒΠΆΡ‡ΠΈΠ½ сибирской популяции ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° ассоциация ΠΎΠ΄Π½ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² rs12143842 ΠΈ rs4657139 Π³Π΅Π½Π° NOS1AP с ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° QT.ЦСль. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ Π°ΡΡΠΎΡ†ΠΈΠ°Ρ†ΠΈΡŽ ΠΎΠ΄Π½ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² rs12143842 ΠΈ rs4657139 Π³Π΅Π½Π° NOS1AP с Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° QT.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΠ°Ρ Π²Ρ‹Π±ΠΎΡ€ΠΊΠ° ΠΌΡƒΠΆΡ‡ΠΈΠ½ (1 353 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°) Π² возрастС 25–69 Π»Π΅Ρ‚ сформирована ΠΈΠ· Π±Π°Π½ΠΊΠ° Π”ΠΠš участников ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° HAPIEE ΠΈ скрининга ΠΌΠΎΠ»ΠΎΠ΄Ρ‹Ρ… людСй 25–44 Π³ΠΎΠ΄Π°, ΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ Новосибирска. Из ΠΊΠ°ΠΆΠ΄ΠΎΠΉ возрастной ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΡ‹ (25–29, 30–34, …, 65–69 Π»Π΅Ρ‚) ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Ρ‹ ΠΎΠΊΠΎΠ»ΠΎ 10–15% ΠΌΡƒΠΆΡ‡ΠΈΠ½ с ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌ, срСдним ΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ QT ΠΈ сформированы ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π³Ρ€ΡƒΠΏΠΏΡ‹. Π“Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ rs4657139 ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠ° Π΄Π»ΠΈΠ½ рСстрикционных Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ². Π“Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ rs12143842 – с использованиСм ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ возрастС ΡΡ‚Π°Ρ€ΡˆΠ΅ 50 Π»Π΅Ρ‚ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏ Π‘Π‘ rs12143842 выявлСн Ρƒ 66,1% ΠΌΡƒΠΆΡ‡ΠΈΠ½ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ ΠΈ срСднСго ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° QT ΠΈ Ρƒ 50,6% Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° QΠ’, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏ Π’Π’ ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π» Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ с Π΄Π»ΠΈΠ½Π½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ QT, 10,8% случаСв (ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ шансов (ОШ) 3,345, 95% Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» (Π”Π˜) 1,149–9,739, p = 0,02). Π“ΠΎΠΌΠΎΠ·ΠΈΠ³ΠΎΡ‚Π½Ρ‹ΠΉ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏ Π’Π’ rs4657139 Ρ‡Π°Ρ‰Π΅ встрСчался Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° QT, Π² 20,1% случаСв, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ, срСднСго QT ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π»ΠΈ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΡ‹ AA ΠΈ AT (p = 0,041). Аналогичная тСндСнция ΡΠΎΡ…Ρ€Π°Π½ΡΠ»Π°ΡΡŒ ΠΏΡ€ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΠΎ возрасту Ρƒ Π»ΠΈΡ† ΡΡ‚Π°Ρ€ΡˆΠ΅ 50 Π»Π΅Ρ‚ (p = 0,031) ΠΈ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ сравнСния частот Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠ² Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΈ срСднСго ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° QT Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ Π’T vs АА + АВ ΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹ΠΉ vs ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΉ + срСдний QT (p = 0,003).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠžΠ΄Π½ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ rs12143842 ΠΈ rs4657139 Π³Π΅Π½Π° NOS1AP ассоциированы с Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° QT Ρƒ ΠΌΡƒΠΆΡ‡ΠΈΠ½, ΠΏΡ€ΠΎΠΆΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Π² НовосибирскС

    ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ экспрСссии Π³Π΅Π½ΠΎΠ² Ρ€53-рСспонсивных ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΏΡ€ΠΈ Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½ΠΎΠΉ Π’-ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠΌΡ„ΠΎΠΌΠ΅

    Get PDF
    Introduction. A more in-depth description of molecular events that disrupt the functioning of the p53 signaling pathway is important for understanding the mechanisms of formation and progression of diffuse B-large cell lymphoma (DCCL), as well as its sensitivity to treatment. The p53 protein exhibits its oncosuppressive function and mediates the antitumor effects of drugs by regulating transcription and/or maturation of a wide range of target genes, including MIR-34A, MIR34B/C, MIR-129-2 and MIR-203. In the tumor tissue of lymphomas, in comparison with normal lymphoid tissue, a decrease in the level of microRNAs encoded by these genes is shown.Aim. The aim of this study was to conduct a comprehensive analysis of the methylation of the genes of the p53-responsive microRNAs MIR-34A, MIR-34B/C, MIR-203 and MIR-129-2, as well as mutations in the DNA-binding domain and destruction of the polyadenylation signal of the TP53 gene in DLBCL.Materials and methods. 136 DNA samples isolated from tumor tissue of patients with DLBCL and 11 DNA samples obtained from lymph nodes with reactive B-cell follicular hyperplasia were analyzed. The methylation status of MIR-203 and MIR-129-2 genes was determined by the method of methyl-specific polymerase chain reaction, MIR-34A and MIR-34B/C genes by the method of methyl-sensitive analysis of high-resolution melting curves. In tumor samples, rs78378222 genotyping was performed by polymerase chain reaction with restriction fragment length polymorphism, resulting in the destruction of the polyadenylation signal, and the nucleotide sequence of the region of the TP53 gene encoding the DNA-binding domain was determined by capillary direct sequencing by Sanger.Results. The methylation detected in lymphoma tissue was tumor-specific. The frequency of analyzed aberrations in the TP53 gene and methylation of MIR-34A, MIR-34B/C, MIR-129-2 and MIR-203 was 21, 23, 55, 65 and 66 %, respectively. At the same time, methylation of the analyzed genes of p53-responsive microRNAs and aberrations in the TP53 gene in the tumor tissue of patients with DLBCL were independent events with a tendency to mutual exclusion. At the same time, it was shown that in the vast majority of lymphoma samples, the methylation of the MIR-34A, MIR-34B/C, MIR-129-2 and MIR-203 genes was combined.Conclusion. Along with aberrations in TP53, methylation of MIR-34A, MIR-34B/C, MIR-129-2 and MIR-203 genes may be an important cause of decreased expression of miR-34a, miR-34b, miR-34c, miR-129 and miR-203 in DLBCL. The combined methylation of the MIR-203, MIR-129-2 and MIR-34B/C genes, as well as the MIR-34B/C and MIR-34A pairs, potentially has a more pronounced pro-tumor effect due to the presence of common targets in the microRNAs encoded by them.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π‘ΠΎΠ»ΡŒΡˆΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для понимания ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² формирования ΠΈ прогрСссии Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½ΠΎΠΉ Π’-ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠΌΡ„ΠΎΠΌΡ‹ (Π”Π’ΠšΠšΠ›), Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΅Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ ΠΈΠΌΠ΅Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ΅ прСдставлСниС ΠΎ молСкулярных событиях, Π½Π°Ρ€ΡƒΡˆΠ°ΡŽΡ‰ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ сигнального ΠΏΡƒΡ‚ΠΈ Ρ€53. Π‘Π΅Π»ΠΎΠΊ Ρ€53 проявляСт свою ΠΎΠ½ΠΊΠΎΡΡƒΠΏΡ€Π΅ΡΡΠΎΡ€Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΈ опосрСдуСт ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ эффСкты лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² посрСдством рСгуляции транскрипции ΠΈ/ΠΈΠ»ΠΈ созрСвания ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ спСктра Π³Π΅Π½ΠΎΠ²-мишСнСй, Π² Ρ‚ΠΎΠΌ числС MIR-34A, MIR-34B/C, MIR-129-2 ΠΈ MIR-203. Π’ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π»ΠΈΠΌΡ„ΠΎΠΌ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠΌΡ„ΠΎΠΈΠ΄Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΡŒΡŽ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ сниТСниС уровня ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π΄Π°Π½Π½Ρ‹ΠΌΠΈ Π³Π΅Π½Π°ΠΌΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš.ЦСль исслСдования – комплСксный Π°Π½Π°Π»ΠΈΠ· мСтилирования Π³Π΅Π½ΠΎΠ² Ρ€53-рСспонсивных ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš MIR-34А, MIR-34Π’/Π‘, MIR-203 ΠΈ MIR-129-2, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² Π”ΠΠš-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΌ Π΄ΠΎΠΌΠ΅Π½Π΅ ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сигнала ΠΊ ΠΏΠΎΠ»ΠΈΠ°Π΄Π΅Π½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Π³Π΅Π½Π° Π’Π 53 ΠΏΡ€ΠΈ Π”Π’ΠšΠšΠ›.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ 136 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π”ΠΠš, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΈΠ· ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π”Π’ΠšΠšΠ›, ΠΈ 11 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π”ΠΠš, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΈΠ· лимфатичСских ΡƒΠ·Π»ΠΎΠ² с Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π’-ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ фолликулярной Π³ΠΈΠΏΠ΅Ρ€ΠΏΠ»Π°Π·ΠΈΠ΅ΠΉ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ статуса мСтилирования Π³Π΅Π½ΠΎΠ² MIR-203 ΠΈ MIR-129-2 осущСствляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΈΠ»-спСцифичной ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ, Π³Π΅Π½ΠΎΠ² MIR-34А ΠΈ MIR-34Π’/Π‘ – ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΈΠ»-Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΊΡ€ΠΈΠ²Ρ‹Ρ… плавлСния высокого Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Π’ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ с ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠΎΠΌ Π΄Π»ΠΈΠ½ рСстрикционных Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ rs78378222, приводящСго ΠΊ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ сигнала полиадСнилирования, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ капиллярного прямого сСквСнирования ΠΏΠΎ БэнгСру ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° нуклСотидная ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°ΠΉΠΎΠ½Π° Π³Π΅Π½Π° Π’Π 53, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π”ΠΠš-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ Π΄ΠΎΠΌΠ΅Π½.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ВыявляСмоС Π² Π»ΠΈΠΌΡ„ΠΎΠΌΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ носило опухолСспСцифичный Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅p. Частота Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ Π² Π³Π΅Π½Π΅ Π’Π 53 ΠΈ мСтилирования MIR-34А, MIR-34Π’/Π‘, MIR-129-2 ΠΈ MIR-203 составила 21, 23, 55, 65 ΠΈ 66 % соотвСтствСнно. ΠŸΡ€ΠΈ этом ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π³Π΅Π½ΠΎΠ² Ρ€53-рСспонсивных ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΈ Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ Π² Π³Π΅Π½Π΅ Π’Π 53 Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π”Π’ΠšΠšΠ› являлись нСзависимыми событиями с Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠ΅ΠΉ ΠΊ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΌΡƒ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡŽ. ВмСстС с Ρ‚Π΅ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π»ΠΈΠΌΡ„ΠΎΠΌΡ‹ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² MIR-34А, MIR-34Π’/Π‘, MIR-129-2 ΠΈ MIR-203 носило сочСтанный Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Наряду с абСррациями Π² Π’Π 53, ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² MIR-34А, MIR-34Π’/Π‘, MIR-129-2 ΠΈ MIR-203 ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ частой ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ сниТСния экспрСссии miR-34a, miR-34b, miR-34c, miR-129 ΠΈ miR-203 ΠΏΡ€ΠΈ Π”Π’ΠšΠšΠ›. Π‘ΠΎΡ‡Π΅Ρ‚Π°Π½Π½ΠΎΠ΅ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² MIR-203, MIR-129-2 ΠΈ MIR-34B/C, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ°Ρ€Ρ‹ MIR-34B/C ΠΈ MIR-34A ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΉ эффСкт Π·Π° счСт наличия Ρƒ ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΈΠΌΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΎΠ±Ρ‰ΠΈΡ… мишСнСй

    ΠœΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² Ρ€53-рСспонзивных онкосупрСссорных ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΏΡ€ΠΈ гСмобластозах

    Get PDF
    The purpose of the study was to present up-to-date data on the frequency and significance of a number of p53-responsive oncosuppressive micrornas genes methylation in malignant neoplasms of the blood system.Material and methods. The search for available literary sources published in the Pubmed and RISC databases was carried out. A total of 399 articles were found, of which 62 were included in this review.Results. The p53 protein regulates a whole class of microRNAs – highly conserved small RNA molecules that affect gene expression mainly by suppressing translation. МicroRNAs play an important role in all cellular processes and can have both oncosuppressive and pro-oncogenic properties. Impaired expression of p53-activated oncosuppressive micrornas in various tumors may be associated with specific epigenetic mechanisms (DNA methylation and histone deacetylation). The review examines the molecular and genetic characteristics of oncosuppressive micrornas functioning in normal hematopoiesis, the violation of expression of which is shown in the development of hemoblastoses, namely: miR-34a, miR-34b/c, miR-145, miR-143 and miR-203. It is known that the transcription of the genes of these microRNAs is carried out and regulated from their own promoters. The latest published research results on the diagnostic, prognostic and clinical significance of gene methylation of the microRNAs under consideration in malignant neoplasms of the blood system are presented. According to literature data, common targets for mir-34a, mir-34b/c, mir-145, mir-143 and miR-203 microRNAs are mRNAs of a number of pro-oncogenes, namely: transcription factor C-MYC, positive cell cycle regulators at the G1/S transition point of CDK4, CDK6 and CYCLIN-D1 phases, anti-apoptotic proteins MDM2, MDM4, BCL2 and MCL1, as well as DNMT3A and DNMT3B methyltransferases and other molecules. In this regard, it should be noted that there are positive feedbacks between p53 and microRNAs activated by it, as well as negative feedbacks between p53-responsive micrornas and C-MYC and DNA methyltransferases.Conclusion. Thus, the data presented in the review clarify the current understanding of the work of the regulatory network of the p53 protein and the micrornas activated by it, and also emphasize the functional association of p53-responsive microRNAs.ЦСль исслСдования – ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ соврСмСнныС Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ частотС ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ мСтилирования Π³Π΅Π½ΠΎΠ² ряда Ρ€53-рСспонзивных онкосупрСссорных ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΏΡ€ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… заболСваниях систСмы ΠΊΡ€ΠΎΠ²ΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ поиск доступных Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… источников, ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π² Π±Π°Π·Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Pubmed ΠΈ РИНЦ. НайдСно 399 статСй, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… 62 Π±Ρ‹Π»ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘Π΅Π»ΠΎΠΊ Ρ€53 Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ†Π΅Π»Ρ‹ΠΉ класс ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš – высококонсСрвативных ΠΌΠ°Π»Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» РНК, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π³Π΅Π½ΠΎΠ² Π² основном ΠΏΡƒΡ‚Π΅ΠΌ подавлСния трансляции. ΠœΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π²ΠΎ всСх ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… процСссах ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΊΠ°ΠΊ онкосупрСссорныС, Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΎΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π½Ρ‹Π΅ свойства. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ экспрСссии Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ€53 онкосупрСссорных ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… опухолях ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ связаны со спСцифичСскими эпигСнСтичСскими ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ (ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π”ΠΠš ΠΈ Π΄Π΅Π°Ρ†Π΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ гистонов). Π’ ΠΎΠ±Π·ΠΎΡ€Π΅ рассмотрСны молСкулярно-гСнСтичСскиС характСристики онкосупрСссорных ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ ΠΊΡ€ΠΎΠ²Π΅Ρ‚Π²ΠΎΡ€Π΅Π½ΠΈΠΈ, Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ экспрСссии ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΏΡ€ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ гСмобластозов, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: miR-34a, miR-34b/с, miR-145, miR-143 ΠΈ miR-203. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ транскрипция Π³Π΅Π½ΠΎΠ² этих ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš осущСствляСтся ΠΈ рСгулируСтся с собствСнных ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ². ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ послСдниС ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΏΠΎ диагностичСскому, прогностичСскому ΠΈ клиничСскому Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ мСтилирования Π³Π΅Π½ΠΎΠ² рассматриваСмых ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΏΡ€ΠΈ злокачСствСнных новообразованиях систСмы ΠΊΡ€ΠΎΠ²ΠΈ. Богласно Π΄Π°Π½Π½Ρ‹ΠΌ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… источников, частыми ΠΎΠ±Ρ‰ΠΈΠΌΠΈ мишСнями для ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš miR-34a, miR-34b/с, miR-145, miR-143 ΠΈ miR-203 ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌ-РНК ряда ΠΏΡ€ΠΎΠΎΠ½ΠΎΠΊΠΎΠ³Π΅Π½ΠΎΠ², Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: транскрипционного Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° C-MYC, ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… рСгуляторов ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° G1/S Ρ„Π°Π· CDK4, CDK6 ΠΈ CYCLIN-D1, антиапоптотичСских Π±Π΅Π»ΠΊΠΎΠ² MDM2, MDM4, Π’CL2 ΠΈ MCL1, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π”ΠΠš-мСтилтрансфСраз DNMT3A ΠΈ DNMT3B ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ». Описано Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… связСй ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€53 ΠΈ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ ΠΈΠΌ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… связСй ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€53-рСспонзивными ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΈ c-MYC ΠΈ Π”ΠΠš-мСтилтрансфСразами.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π”Π°Π½Π½Ρ‹Π΅, прСдставлСнныС Π² ΠΎΠ±Π·ΠΎΡ€Π΅, ΡƒΡ‚ΠΎΡ‡Π½ΡΡŽΡ‚ соврСмСнныС прСдставлСния ΠΎ Ρ€Π°Π±ΠΎΡ‚Π΅ рСгуляторной сСти Π±Π΅Π»ΠΊΠ° Ρ€53 ΠΈ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΈΠΌ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°ΡŽΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΡΡΠΎΡ†ΠΈΠ°Ρ†ΠΈΡŽ Ρ€53-рСспонзивных ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš

    NUMBER OF COPIES OF MITOCHONDRIAL DNA OF LEUKOCYTES AS A MARKER OF PREDISPOSITION TO CORONARY HEART DISEASE AND SUDDEN CARDIAC DEATH

    No full text
    The review provides information on studies that have studied the relationship between the number of copies of mitochondrial DNA (mtDNA) in peripheral blood leukocytes with coronary heart disease and sudden cardiac death (SCD). Mitochondrial dysfunction is a major component of the aging process and can play a key role in the development of cardiovascular diseases of atherosclerotic origin, and the number of copies of mtDNA is an indirect biomarker of mitochondrial function. According to a number of studies, measuring the number of copies of mtDNA in peripheral blood leukocytes can improve the risk assessment of CVD to decide on the beginning of primary prevention of CVD. So far, relatively few such studies have been carried out. Nevertheless, the results obtained, according to the authors, allow us to hope that this indicator can be used in assessing the risk of individual CVD. Further studies carried out on large groups in a prospective design should provide the necessary additional information on the feasibility of including this indicator in the appropriate risk meters

    Association of SCN5A gene polymorphism with dilated cardiomyopathy

    Get PDF
    Subjects and methods. The study included patients with IDC (group 1; n=111, 89.2% men, average age 51.7Β±9.7 years) and ICM (group 2; n=110, 91.5% men, average age 58.7Β±8.4 years). All patients (IDC and ICM) underwent coronary angiography. Based on the anamnesis data and instrumental studies, those patients who could be said to have no risk factors for the development of dilatation of the heart cavities were identified in the group 1. And those patients who were reliably diagnosed with coronary artery disease were in the group 2, that is, dilatation of the heart cavities is due to a previous myocardial infarction, existing angina pectoris. The control group (n=121, average age 53.6Β±4.8 years) included patients who had no manifestations of cardiovascular diseases. The patients underwent laboratory and instrumental studies, as well as molecular and genetic studies of the A/G polymorphism of the SCN5A gene (rs1805124).Results. In the group with IDC 51.4% of patients were carriers of the common homozygous AA genotype, the heterozygous AG genotype-40.5%, and the rare homozygous GG genotype-8.1%. In the control group 63.3% of patients were identified as carriers of a homozygous genotype by a common allele, and 33.5% were carriers heterozygous genotype, and homozygous genotype for a rare allele – 3.2%. The analysis revealed a statistically significant decrease in the frequency of carrying the homozygous AA genotype in patients with IDC compared to the control group of the rs1805124 polymorphism of the SCN5A gene. In the group of patients with ICM, the А allele (69.5% vs. 80.1%, p=0.003) and the AA genotype (50.9% vs. 63.3%, p=0.030) were significantly less common than in the control group. The rare homozygous GG genotype was statically more common in patients with ICM compared to the control group (11.8% vs. 3.2%, p=0.004). Also, the G allele in the group of patients with ICM was detected statically significantly more often than in the control group (30.5% vs. 19.9%, p= 0.003).Conclusion. The polymorphic locus rs1805124 of the SCN5A gene is associated with both IDC and ICM. Homozygous genotype AA and allele A are conditionally protective factors for the development of these conditions in men
    corecore