23 research outputs found

    Adaptive abilities of benthic microalga <i>Attheya ussurensis</i> to prolonged contamination with a salt of hexavalent chromium in culture

    Get PDF
    Adaptive capacity of benthic microalga Attheya ussurensis (Bacillariophyta) from Peter the Great Bay, Japan Sea to the medium contamination with a salt of hexavalent chromium is tested in laboratory culture. In unpolluted culture, growth of the alga could be described by S-shaped curve, the lag-phase was short or absent, the exponential stage with square or near-square cells was characterized by high growth rate, mean size of cells was 16.0 x 15.5 mm at the exponential stage and 17.2 x 15.7 mm at the stationary stage, the chloroplasts were olive-green colored, had wide blades, and diverged radially from a cell center. After 10-days exposing to potassium dichromate in concentration 0.01 mg/L, the number of cells did not change but size and morphology of cells changed on the 7th day; the higher concentrations as 0.1, 1.0 and 2.0 mg/L caused the decreasing of cells number to 81, 48, 33 % of control number, respectively, and size and morphology of the cells changed on the 4th day for 0.1 mg/L and on the 2nd day for 1.0 and 2.0 mg/L. After further exposing under the same concentrations, only 27 % of cells survived under 0.01 mg/L, 10 % under 0.10 mg/L, and all cells were eliminated under higher pollution, cell division was inhibited in all cases, and the following morphological changes occurred: cell walls curved, cell horns shortened, chloroplasts deformed, cytoplasm consolidated, retraction was detected for 90 % of the cells. After the algae transfer from the medium polluted by potassium dichromate in concentration 0.01 and 0.10 mg/L to a clean medium, they only partially restored their number - to 42 % of control number for those exposed under the concentration 0.01 mg/L. The experiment shows that the benthic algae A. ussurensis is highly sensitive to the medium contamination because of breaking of the cells division process and morphological changes which cannot be restored even after cessation of the toxic impact

    Combined effect of salinity and pollution with potassium dichromate on adaptive capacity of diatom benthic microalga <i>Attheya ussurensis</i> in laboratory environment

    Get PDF
    Combined effect of two stress factors (decreasing of salinity and presence of potassium dichromate in the medium) on adaptive capacity of benthic alga Attheya ussurensis is investigated. The salinity decreasing to 20 ‰ combined with 0.01 mg/L of K2Cr2O7 in the medium didn’t cause any change of the cells growth in number, as compared with uncontaminated environment (32 ‰, control), or changes in their morphology. The same salinity decreasing with K2Cr2O7 concentration 0.10 mg/L caused a lowering of the cells growth to 86 % of the control value by the end of experiment that was accompanied by minor morphological abnormalities, as cells elongation in pervalvar axis direction and granulation of chloroplasts. In the second seeding, there was no change of the cells growth again under the low concentration of K2Cr2O7 and their adaptation to the concentration 0.10 mg/L was observed: in the end of experiment the cells number had no significant difference from the control one. The salinity decreasing to 16 ‰ with the toxicant concentration 0.01 mg/L caused a lowering of the cells growth in the 4th day that persisted until the end of experiment and some insignificant changes of their morphology. The same salinity decreasing with the toxicant concentration 0.10 mg/L caused a significant drop of the cells number with strong negative morphological changes; moreover, the alga wasn’t able to adapt to this combined stress after re-seeding

    Effect of nanosecond repetitive pulsed microwave exposure on proliferation of bone marrow cells

    Get PDF
    The purpose was to study the proliferative activity of bone marrow mononuclear cells (BMNCs) of rats after irradiated by nanosecond repetitive pulsed microwave (RPM). It was found that the irradiated by nanosecond microwave pulses can affect the BMNCs proliferation in vitro. It is important that both stimulation and inhibition of proliferation were observed after exposure. The effect depended on the pulse repetition frequency. The amount of BMNCs increased after exposure to pulse repetition frequency of 13 Hz up to 30% in comparison with a control cells and up to 51% in comparison with a falseirradiated cells. In contrast, there was inhibition up to 40% of BMNCs after exposure to a frequency of 8 Hz, in comparison with a control group

    ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚Π½Ρ‹Π΅ свойства ΠΈ Π±ΠΈΠΎΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΠΌΠΎΡΡ‚ΡŒ in vitro Ρ‚Ρ€Π΅ΠΊΠΎΠ²ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ Π½Π° основС полиэтилСнтСрСфталата послС ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ воздСйствия атмосфСрной Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΈ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Ξ³-излучСния Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π° 60Π‘o

    Get PDF
    Aim. This research studies the effect of a low-temperature atmospheric plasma and the subsequent Ξ³-ray sterilization on topography and properties of track membranes (TM) based on polyethylene terephthalate (PET).Materials and methods. TM were obtained by irradiating a PET film with a 40Ar+8 ion beam and then by chemical etching in an aqueous solution of 1.5N NaOH. Modification of the membrane surface was carried out by exposure to an atmospheric low-temperature plasma. The gamma radiation of the radionuclide 60Π‘ΠΎ with the dosages of 1kGy (SI) and 10 kGy (SI) was used to sterilize the membranes. In vitro studies of the TM biocompatibility were performed by using a culture of prenatal stromal cells isolated from a lung of an 11-week human embryo and maintained ex vivo.Results. It has been established that the treatment of the membranes with the low-temperature atmospheric plasma leads to an increase in the roughness and hydrophilization of the TM surface. The change in the physical-chemical state of the TM surface as a result of the exposure of cold plasma and subsequent sterilization had practically no effect on the morphofunctional state of the culture of human prenatal stromal cells. In vitro tests on the TM cellular-molecular biocompability with a short-term culture of in vitro fibroblast-like cells have made it possible to indicate their relative bioinerticity with respect to human stromal cells. The conclusion is made about the relative bioinerticity of TM and the proposed regimes for their sterilization with respect to the culture of human stromal cells, the prospects for further research in applying the material to the areas of surgical practice (cardiology, ophthalmology).ЦСль. ИсслСдованиС воздСйствия атмосфСрной Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΡ‹ (АНП) ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ стСрилизации Ξ³-Π»ΡƒΡ‡Π°ΠΌΠΈ Π½Π° Ρ‚ΠΎΠΏΠΎΠ³Ρ€Π°Ρ„ΠΈΡŽ ΠΈ свойства Ρ‚Ρ€Π΅ΠΊΠΎΠ²Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ (ВМ) Π½Π° основС полиэтилСнтСрСфталата (ПЭВЀ).ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ВМ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡƒΡ‚Π΅ΠΌ облучСния ΠΏΠ»Π΅Π½ΠΊΠΈ ПЭВЀ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ ΠΈΠΎΠ½ΠΎΠ² 40Ar+8 ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ химичСского травлСния Π² 1,5N Π²ΠΎΠ΄Π½ΠΎΠΌ растворС NaOH. Для ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ повСрхности Π½Π° ВМ воздСйствовали АНП Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠΈ 30 с. БтСрилизация ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ с использованиСм Ξ³-излучСния Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π° 60Π‘ΠΎ Π² Π΄ΠΎΠ·Π°Ρ… 1 ΠΈ 10 ΠΊΠ“Ρ€ (Si). Π‘ΠΈΠΎΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΠΌΠΎΡΡ‚ΡŒ ВМ in vitro исслСдовали с использованиСм ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΏΡ€Π΅Π½Π°Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (ΠŸΠ‘ΠšΡ‡), Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΈΠ· Π»Π΅Π³ΠΊΠΎΠ³ΠΎ 11-нСдСльного эмбриона Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ex vivo.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ВМ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ АНП ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Π½ΠΈΡŽ ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΠΈ ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΡ… повСрхности ВМ. ИзмСнСниС Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСского состояния повСрхности ВМ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ воздСйствия Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ стСрилизации практичСски Π½Π΅ влияло Π½Π° ΠΌΠΎΡ€Ρ„ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ состояниС ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠŸΠ‘ΠšΡ‡. Π‘Π΄Π΅Π»Π°Π½ΠΎ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΎΠ± ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ биоинСртности ВМ ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΠΈΡ… Ξ³-стСрилизации Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, пСрспСктивности Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдований Π² ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΊ направлСниям хирургичСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ (кардиология, ΠΎΡ„Ρ‚Π°Π»ΡŒΠΌΠΎΠ»ΠΎΠ³ΠΈΡ)

    Antipyretic drugs: benefits and undesirable consequences

    Get PDF
    Fever is a defensive and adaptive reaction of the body that develops in response to the action of pathogenic stimuli. It often accompanies various infectious, autoimmune, oncohematological and other diseases. Due to the frequent significant deterioration of children's general health, the occurrence of fever in children gives rise to concern not only in parents, but also in pediatricians. According to temperature level, fever can be classified into different categories: subfebrile - 37.1 to 37.9 Β°C, moderate -38 to 39 Β°C, febrile - 39.1 to 41 Β°C and hyperthermic - above 41 Β°C. By clinical manifestation distinguish benign, or rose, and malignant, or white, fever. The need to use antipyretic drugs depends not only on the hight of the body temperature elevation, but also on the patient's general health. The clinical guidelines state that the use of acetylsalicylic acid, nimesulide and met-amizole to lower the body temperature in children is not recommended, due to high risk of adverse reactions. Ibuprofen and paracetamol are the drugs of choice to lower body temperature in children both in Russia and abroad. Over 120 comparative studies of these two drug formulations have shown their close efficacy, but ibuprofen is most preferred for the treatment of fever and pain. In order to lower body temperature, parents can uncontrollably use antipyretic drugs in various combinations and incorrect dosages, which leads to severe toxic effects. The article presents a clinical case of Reye's syndrome in a 10-year-old girl, which is most likely associated with the use of aspirin as an antipyretic

    ΠŸΠžΠ’Π•Π”Π•ΠΠ§Π•Π‘ΠšΠΠ― ΠΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π¬ КРЫБ Π’ «ОВКРЫВОМ ΠŸΠžΠ›Π•Β» ΠŸΠžΠ‘Π›Π• Π‘Π’Π•Π’ΠžΠ’ΠžΠ™ Π˜Π›Π˜ Π’Π•ΠœΠΠžΠ’ΠžΠ™ Π”Π•ΠŸΠ Π˜Π’ΠΠ¦Π˜Π™ И Π€Π˜Π—Π˜Π§Π•Π‘ΠšΠžΠ“Πž ΠŸΠ•Π Π•Π£Π’ΠžΠœΠ›Π•ΠΠ˜Π―

    Get PDF
    Aim. As is known, various stressful loads and their combination lead to unequal direction and degree of psychological and emotional instability. In this regard, one of the pressing issues becomes regulation and correction of psycho-emotional conditions of the person in the complicated conditions of activity, such as athletes during training and competition. To develop appropriate stress-corrective programs should their experimental validation. Therefore, the aim of this study was to investigate the behavioral activity of rats in the β€œopen field” after dark or light deprivation and physical fatigue.Materials and methods. The experimental study was performed on the 40 adult male rats β€œWistar”. The experimental groups for 10 days were kept in an artificial bright light (150 lx) or darkness (2–3 lx) for the induction of desynchronozes. Method of forced swimming until complete exhaustion was chosen for the model of physical fatigue. The animals in all groups evaluated behavioral activity in the β€œopen field” in daylight conditions after 24 h after swim test.Results. It was established that in the control group in the terms of natural lighting day after 5 days of daily physical activity occurred depression of the active-search behavior in the β€œopen field”. It was expressed in reducing the number of crossed squares and vertical struts in comparison to intact animals receiving no load. In the groups of animals, which kept in a dark or light deprivation until the presentation of the swim test there was an increase in passive-defensive behavior in the β€œopen field”, which was reflected in an increase in acts of grooming and defecation. ЦСль. Как извСстно, Ρ€Π°Π·Π½Ρ‹Π΅ ΡΡ‚Ρ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΈ ΠΈΡ… сочСтаниС Π²Π΅Π΄ΡƒΡ‚ ΠΊ Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ направлСнности ΠΈ выраТСнности ΠΏΡΠΈΡ…ΠΎΡΠΌΠΎΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Π’ связи с этим ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… вопросов становится рСгуляция ΠΈ коррСкция ΠΏΡΠΈΡ…ΠΎΡΠΌΠΎΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… состояний Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² слоТных условиях Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ спортсмСнов Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΠΊ ΠΈ сорСвнований. Для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½Ρ‹Ρ… стрСсс-ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ обоснованиС. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ†Π΅Π»ΡŒΡŽ настоящСго исслСдования явилось ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ повСдСнчСской активности крыс Π² Β«ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΏΠΎΠ»Π΅Β» послС свСтовой ΠΈΠ»ΠΈ Ρ‚Π΅ΠΌΠ½ΠΎΠ²ΠΎΠΉ Π΄Π΅ΠΏΡ€ΠΈΠ²Π°Ρ†ΠΈΠΉ ΠΈ физичСского пСрСутомлСния.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π½Π° 40 ΠΏΠΎΠ»ΠΎΠ²ΠΎΠ·Ρ€Π΅Π»Ρ‹Ρ… крысах-самцах ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ Wistar. Для ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ дСсинхроноза ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Π΅ ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 10 сут ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π»ΠΈΡΡŒ Π½Π° искусствСнном ярком освСщСнии (150 Π»ΠΊ) Π»ΠΈΠ±ΠΎ ΠΏΠΎΠ»Π½ΠΎΠΌ Π·Π°Ρ‚Π΅ΠΌΠ½Π΅Π½ΠΈΠΈ (2–3 Π»ΠΊ). МодСлью физичСского пСрСутомлСния Π²Ρ‹Π±Ρ€Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ плавания крыс Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ утомлСния Π² собствСнной ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ. Π§Π΅Ρ€Π΅Π· 24 Ρ‡ послС ΠΏΠ»Π°Π²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ тСста Ρƒ всСх Π³Ρ€ΡƒΠΏΠΏ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎΠ²Π΅Π΄Π΅Π½Ρ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² Β«ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΏΠΎΠ»Π΅Β» Π² условиях СстСствСнного освСщСния.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ Π² условиях СстСствСнного освСщСния Ρ‡Π΅Ρ€Π΅Π· 1 сут послС 5 сут Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎΠΉ физичСской Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ происходило ΡƒΠ³Π½Π΅Ρ‚Π΅Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ-поисковой ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ повСдСния Π² Β«ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΏΠΎΠ»Π΅Β», Ρ‡Ρ‚ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ°Π»ΠΎΡΡŒ Π² ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ количСства пСрСсСчСнных ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… стоСк Π² сравнСнии с ΠΈΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΌΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌΠΈ, Π½Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΠΌΠΈ Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ. Π’ Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π²ΡˆΠΈΡ…ΡΡ Π΄ΠΎ ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ»Π°Π²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ тСста Π² условиях круглосуточной Ρ‚Π΅ΠΌΠ½ΠΎΠ²ΠΎΠΉ ΠΈΠ»ΠΈ свСтовой Π΄Π΅ΠΏΡ€ΠΈΠ²Π°Ρ†ΠΈΠΉ, наблюдалось ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ пассивно-ΠΎΠ±ΠΎΡ€ΠΎΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ повСдСния Π² Β«ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΏΠΎΠ»Π΅Β», Ρ‡Ρ‚ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ°Π»ΠΎΡΡŒ Π² ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Π°ΠΊΡ‚ΠΎΠ² Π³Ρ€ΡƒΠΌΠΈΠ½Π³Π° ΠΈ Π΄Π΅Ρ„Π΅ΠΊΠ°Ρ†ΠΈΠΉ.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, послС 5 сут Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎΠΉ физичСской Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Ρƒ крыс наблюдалось ΡƒΠ³Π½Π΅Ρ‚Π΅Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ-поисковой ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ повСдСния Π² Β«ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΏΠΎΠ»Π΅Β». Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 10 сут свСтовой ΠΈΠ»ΠΈ Ρ‚Π΅ΠΌΠ½ΠΎΠ²ΠΎΠΉ Π΄Π΅ΠΏΡ€ΠΈΠ²Π°Ρ†ΠΈΠΉ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ»Π°Π²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ тСста наблюдалось ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ пассивно-ΠΎΠ±ΠΎΡ€ΠΎΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ повСдСния ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π² Β«ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΏΠΎΠ»Π΅Β».

    ДСйствиС наносСкундного ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСского ΠΌΠΈΠΊΡ€ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ излучСния Π½Π° процСссы Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ

    Get PDF
    The effects of pulse periodic microwaves (10 GHz, duration of pulse 100 ns, pulse repetition frequency 4β€”19 pps, peak power density 40β€”1 520 W/cm2 ) on the reparative regeneration of full-thickness skin wounds on mice was investigated. This effect depends on the pulse repetition frequency and peak power density.ИсслСдовано влияниС ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСского ΠΌΠΈΠΊΡ€ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ излучСния (10 Π“Π“Ρ†, Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² 100 нс, частота повторСния 4β€”19 ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² Π² сСкунду, пиковая ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΠ° мощности 40β€”1 520 Π’Ρ‚/см2 ) Π½Π° Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΡŽ полнослойной ΠΊΠΎΠΆΠ½ΠΎΠΉ Ρ€Π°Π½Ρ‹ Ρƒ ΠΌΡ‹ΡˆΠ΅ΠΉ. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΠΎΠ΅ воздСйствиС ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π·Π°ΠΆΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Π½. Π”Π°Π½Π½Ρ‹ΠΉ эффСкт зависит ΠΎΡ‚ частоты повторСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΠΈΠΊΠΎΠ²ΠΎΠΉ плотности ΠΏΠΎΡ‚ΠΎΠΊΠ° мощности

    Π”Π˜ΠΠΠœΠ˜ΠšΠ IN VITRO Π”Π•Π“Π ΠΠ”ΠΠ¦Π˜Π˜ ΠΠ•Π’ΠšΠΠΠ«Π₯ ΠœΠΠ’Π Π˜ΠšΠ‘ΠžΠ’ Π˜Π— ΠŸΠžΠ›Π˜ΠœΠžΠ›ΠžΠ§ΠΠžΠ™ ΠšΠ˜Π‘Π›ΠžΠ’Π« Π’ ΠœΠžΠ”Π•Π›Π¬ΠΠžΠ™ Π‘Π˜ΠžΠ›ΠžΠ“Π˜Π§Π•Π‘ΠšΠžΠ™ Π–Π˜Π”ΠšΠžΠ‘Π’Π˜

    Get PDF
    The weekly in vitro degradation of fibrous-porous non-woven polylactide scaffolds made by aerodynamic formation in a turbulent gas flow has been studied with 37 Β°Π‘ in model RPMI-1640 medium imitated body fluid of organism. Lactate monomers released into solution exponentially and reached slowly a maximum value the end of the observation (5th week of dissolution). At the same time, reducing the concentrations of calcium and inorganic phosphorus ions in solutions contacted with tested samples (10Γ—10Γ—1 mm2) testified about chemical elements adsorption on artificial material. Ions exchange with biological fluids may be a basis of regulated bioactivity of fibrous-porous non-woven biodegradable material in application to intercellular matrix bioengineering for regenerative medicineΠ˜Π·ΡƒΡ‡Π΅Π½Π° понСдСльная дСградация in vitro ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 37 Β°Π‘ волокнисто-пористых Π½Π΅Ρ‚ΠΊΠ°Π½Ρ‹Ρ… скСффолдов ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ кислоты, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… аэродинамичСским Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΠΌ Π³Π°Π·ΠΎΠ²ΠΎΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠ΅, Π² модСльной срСдС RPMI-1640, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅Π»Π΅ΡΠ½ΡƒΡŽ ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. ΠœΠΎΠ½ΠΎΠΌΠ΅Ρ€Ρ‹ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ кислоты Π²Ρ‹Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ Π² раствор ΠΏΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π·Π°ΠΊΠΎΠ½Ρƒ ΠΈ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ достигали ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ ΠΊ ΠΊΠΎΠ½Ρ†Ρƒ наблюдСний (5-я Π½Π΅Π΄ растворСния). Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя сниТСниС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΈ нСорганичСского фосфора Π² растворах, ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… с тСстируСмыми ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ (10 Β΄ 10 Β΄ 1 ΠΌΠΌ2 ), ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠ²Π°Π»ΠΎ ΠΎΠ± адсорбции химичСских элСмСнтов Π½Π° искусствСнном ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅. ОбмСн ΠΈΠΎΠ½Π°ΠΌΠΈ с биологичСскими Тидкостями ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ основой Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ биоактивности волокнисто-пористого Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π² ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΊ Π±ΠΈΠΎΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса для Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ‹

    Surface properties and in vitro biocompability of a track membrane based on polyethylene terephthalate after exposure to low-temperature atmospheric plasma and ionizing Ξ³ -radionuclide 60Π‘o

    No full text
    Aim. This research studies the effect of a low-temperature atmospheric plasma and the subsequent Ξ³-ray sterilization on topography and properties of track membranes (TM) based on polyethylene terephthalate (PET).Materials and methods. TM were obtained by irradiating a PET film with a 40Ar+8 ion beam and then by chemical etching in an aqueous solution of 1.5N NaOH. Modification of the membrane surface was carried out by exposure to an atmospheric low-temperature plasma. The gamma radiation of the radionuclide 60Π‘ΠΎ with the dosages of 1kGy (SI) and 10 kGy (SI) was used to sterilize the membranes. In vitro studies of the TM biocompatibility were performed by using a culture of prenatal stromal cells isolated from a lung of an 11-week human embryo and maintained ex vivo.Results. It has been established that the treatment of the membranes with the low-temperature atmospheric plasma leads to an increase in the roughness and hydrophilization of the TM surface. The change in the physical-chemical state of the TM surface as a result of the exposure of cold plasma and subsequent sterilization had practically no effect on the morphofunctional state of the culture of human prenatal stromal cells. In vitro tests on the TM cellular-molecular biocompability with a short-term culture of in vitro fibroblast-like cells have made it possible to indicate their relative bioinerticity with respect to human stromal cells. The conclusion is made about the relative bioinerticity of TM and the proposed regimes for their sterilization with respect to the culture of human stromal cells, the prospects for further research in applying the material to the areas of surgical practice (cardiology, ophthalmology)
    corecore