349 research outputs found

    Proceedings of the 24th annual Central Plains irrigation conference

    Get PDF
    Presented at Proceedings of the 24th annual Central Plains irrigation conference held on February 21-22 in Colby, Kansas.Includes bibliographical references

    Comparison of soil water sensing methods for irrigation management and research

    Get PDF
    Presented at the 2007 Central Plains irrigation conference on February 27-28 in Kearney, Nebraska.Includes bibliographical references.As irrigation water resources decrease and deficit irrigation becomes more common across the Great Plains, greater accuracy in irrigation scheduling will be required. With deficit irrigation a smaller amount of soil water is held in reserve and there is less margin for error. Researchers investigating deficit irrigation practices and developing management practices must also have accurate measures of soil water content - in fact, the two go hand in hand. New management practices for deficit irrigation will require more accurate assessments of soil water content if success is to be ensured. This study compared several commercial soil water sensing systems, four of them based on the electromagnetic (EM) properties of soil as influenced by soil water content, versus the venerable neutron moisture meter (NMM), which is based on the slowing of neutrons by soil water. While performance varied widely, the EM sensors were all less precise and less accurate in the field than was the NMM. Variation in water contents from one measurement location to the next was much greater for the EM sensors and was so large that these sensors are not useful for determining the amount of water to apply. The NMM is still the only sensor that is suitable for irrigation research. However, the NMM is not practical for on-farm irrigation management due to cost and regulatory issues. Unfortunately, our studies indicate that the EM sensors are not useful for irrigation management due to inaccuracy and variability. A new generation of EM sensors should be developed to overcome the problems of those currently available. In the meantime, tensiometers, electrical resistance sensors and soil probes may fill the gap for irrigation management based on soil water sensing. However, many farmers are successfully using irrigation scheduling based on crop water use estimates from weather station networks and reference ET calculations. When used in conjunction with direct field soil water observations to avoid over irrigation, the ET network approach has proved useful in maximizing yields

    Northern Texas High Plains

    Get PDF
    Presented at the 2002 USCID/EWRI conference, Energy, climate, environment and water - issues and opportunities for irrigation and drainage on July 9-12 in San Luis Obispo, California.Includes bibliographical references.Cotton (Gossypium hirsutum L.) is beginning to be produced on the Northern Texas High Plains as a lower water-requiring crop while producing an acceptable profit. Cotton is a warm season, perennial species produced like an annual yet it requires a delicate balance of water and water deficit controls to most effectively produce high yields in this thermally limited environment. This study measured the water use of cotton in near-fully irrigated, deficiently irrigated, and dryland regimes in a Northern Texas High Plains environment, which has a shortened cotton producing season, using precision weighing lysimeters in 2000 and 2001. The irrigated regimes were irrigated with a lateral-move sprinkler system. The water use data were used to develop crop coefficient data and compared with the FAO-56 method for estimating crop water use. Cotton yield, water use, and water use efficiency was found to be as good in this region as other more noted cotton regions. FAO-56 ET prediction procedures performed better for the more fully irrigated treatments in this environment

    Drip and evaporation

    Get PDF
    Presented at the Central Plains irrigation conference on February 16-17, 2005 in Sterling, Colorado.Includes bibliographical references.Loss of water from the soil profile through evaporation from the soil surface is an important contributor to inefficiency in irrigated crop production. Residue management systems may reduce this evaporative loss, but cannot be used in all cropping systems. Choice of the irrigation system and its management also can reduce evaporative loss. In particular, subsurface drip irrigation limits soil surface wetting and can lead to an overall reduction in evapotranspiration (crop water use) of as much as 10%. The example presented shows that most of the water savings occur early in the season when crop cover is not yet complete. Because evaporation from the soil surface has a cooling effect on the soil in the root zone, irrigation methods that limit evaporation will result in smaller fluctuations in soil temperature and warmer soil temperatures overall. For some crops such as cotton, this has beneficial effects that include earlier root growth, better plant development and larger yields

    Comparison of spray, LEPA, and SDI for cotton and grain sorghum in the Texas Panhandle

    Get PDF
    Presented at the Central Plains irrigation conference on February 16-17, 2005 in Sterling, Colorado.Includes bibliographical references.Crop responses to MESA (mid-elevation spray application), LESA (low-elevation spray applicator), LEPA, (low energy precision application), and SDI (subsurface drip irrigation) were compared for full and deficit irrigation rates in the Texas Panhandle. Crops included three seasons of grain sorghum and one season of cotton; crop responses consisted of economic yield, seasonal water use, and water use efficiency (WUE). Irrigation rates were I0, I25, I50, I75, and I100 (where the subscript denotes the percentage of full irrigation, and I0 is dryland). Yield and WUE was greatest for SDI and least for spray at the I25 and I50 rates, and greatest for spray at the I100 rate. Yield and WUE trends were not consistent at the I75 rate. Seasonal water use was not significantly different in most cases between irrigation methods within a given irrigation rate. For cotton, the irrigation method did not influence boll maturity rates, but SDI resulted in higher fiber quality at the I25, I50, and I100 rates

    Cotton production with SDI, LEPA, and spray irrigation in a thermally-limited climate

    Get PDF
    Producers in the Northern Texas Panhandle and Southwestern Kansas are considering cotton as an alternative crop to corn because cotton has a similar profit potential for about one half the irrigation requirement. However, limited growing degree days pose some risk for cotton production. We hypothesized that cotton under subsurface drip irrigation (SDI) would undergo less evaporative cooling following an irrigation event compared with low energy precision applicators (LEPA) or spray irrigation and, therefore, would increase growing degree day accumulation and lead to earlier maturation. Cotton maturity was more related to irrigation rate than irrigation method, with dryland and minimal irrigation rates reaching maturity earliest. However, fiber quality, as indicated by total discount, was usually better with SDI. Lint yield and water use efficiency were greatest with SDI at low irrigation rates in 2003, and lint yield and gross returns were greatest with SDI regardless of irrigation rate in 2004

    Evaluation of a wireless infrared thermometer with a narrow field of view

    Get PDF
    Many agricultural studies rely on infrared sensors for remote measurement of surface temperatures for crop status monitoring and estimating sensible and latent heat fluxes. Historically, applications for these non-contact thermometers employed the use of hand-held or stationary industrial infrared thermometers (IRTs) wired to data loggers. Wireless sensors in agricultural applications are a practical alternative, but the availability of low cost wireless IRTs is limited. In this study, we designed prototype narrow (10â—¦) field of view wireless infrared sensor modules and evaluated the performance of the IRT sensor by comparing temperature readings of an object (Tobj) against a blackbody calibrator in a controlled temperature room at ambient temperatures of 15 â—¦C, 25 â—¦C, 35 â—¦C, and 45 â—¦C. Additional comparative readings were taken over plant and soil samples alongside a hand-held IRT and over an isothermal target in the outdoors next to a wired IRT. The average root mean square error (RMSE) and mean absolute error (MAE) between the collected IRT object temperature readings and the blackbody target ranged between 0.10 and 0.79 â—¦C. The wireless IRT readings also compared well with the hand-held IRT and wired industrial IRT. Additional tests performed to investigate the influence of direct radiation on IRT measurements indicated that housing the sensor in white polyvinyl chloride provided ample shielding for the self-compensating circuitry of the IR detector. The relatively low cost of the wireless IRT modules and repeatable measurements against a blackbody calibrator and commercial IR thermometers demonstrated that these wireless prototypes have the potential to provide accurate surface radiometric temperature readings in outdoor applications. Further studies are needed to thoroughly test radio frequency communication and power consumption characteristics in an outdoor setting

    USCID fourth international conference

    Get PDF
    Presented at the Role of irrigation and drainage in a sustainable future: USCID fourth international conference on irrigation and drainage on October 3-6, 2007 in Sacramento, California.Includes bibliographical references.Deficit irrigation commonly is used in regions with reduced or limited irrigation capacity to increase water use efficiency (WUE). This research measured winter wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L. Moench) water use (ET) and yields so WUE could be determined. Two precision weighing lysimeters were used to accurately measure the crop ET from fully irrigated (FULL) fields and deficit irrigated (DI) fields. The DI wheat was an irrigation cutoff at the jointing growth stage as might be used if available irrigation water was being shifted to summer crops while the sorghum DI used a reduced irrigation rate (~50% FULL irrigation) as might occur with a lower irrigation capacity. Both crops were irrigated by a lateral-move sprinkler system at Bushland, Texas. Wheat ET was decreased by 20% from 849 to 677 mm with a 76% decline in irrigation. Sorghum ET decreased 10% from 621 mm to 560 mm with a 48% decline in irrigation. WUE of sorghum for both grain and dry matter increased slightly with DI but seed mass, and harvest index were unaffected. DI irrigated wheat extracted soil water to a depth of 1.7 m in the Pullman soil with some apparent root extraction to the 2.3-m depth. Sorghum extracted soil water mainly above 1.2 m in the Pullman soil profile if well watered, but DI sorghum extracted soil water to 1.7 m. Sprinkler DI of sorghum beginning with a nearly full soil water content profile permitted the crop to better exploit the soil profile water and minimize soil water deficit effects on crop yield in a year with typical summer rainfall for Bushland (~210 mm) such that yield was not reduced by DI. Cutting off winter wheat irrigation in early spring with a near full soil water profile at jointing, permitted the wheat crop to fully exploit the soil water reservoir when rainfall was normal

    USING PLANT CANOPY TEMPERATURE TO IMPROVE IRRIGATED CROP MANAGEMENT

    Get PDF
    Remotely sensed plant canopy temperature has long been recognized as having potential as a tool for irrigation management. However, a number of barriers have prevented its routine use in practice, such as the spatial and temporal resolution of remote sensing platforms, limitations in computing capacity and algorithm accuracy, and the cost and ruggedness of sensors and related components that can transmit and receive data wirelessly. Recent advances in all of these areas have made remote sensing more feasible in providing real-time feedback of field conditions. This can potentially reduce management time, maintain crop yield and crop water productivity, and detect unusual conditions such as equipment malfunctions or biotic stress sooner. Center pivots equipped with wireless infrared thermometers (IRTs) have been found to be suitable as a remote sensing platform. Canopy temperature-based algorithms have successfully automated drip and center pivot irrigation schedules where crop yield, water use efficiency, seasonal water use, and irrigation amounts applied were comparable to irrigations scheduled manually with a field-calibrated neutron probe. Even without automation, these algorithms can provide timely and valuable information on plant and soil water status, which can improve the management of irrigated crops
    • …
    corecore