919 research outputs found

    Theory, Politics... and History? Early post-war Soviet Control Engineering

    Get PDF
    A fascinating feature of post-war control engineering in the former Soviet Union was the rôle played by the study of the history of the discipline. Even before and during World War II some Soviet control scientists were actively researching the history of their subject; while after the war, historical studies played an important part both in technical developments and in legitimating a native Russian tradition. Two of the most important figures in this historical activity were A. A. Andronov and I. N. Voznesenskii, whose contributions are briefly considered

    Spectral and polarization dependencies of luminescence by hot carriers in graphene

    Full text link
    The luminescence caused by the interband transitions of hot carriers in graphene is considered theoretically. The dependencies of emission in mid- and near-IR spectral regions versus energy and concentration of hot carriers are analyzed; they are determined both by an applied electric field and a gate voltage. The polarization dependency is determined by the angle between the propagation direction and the normal to the graphene sheet. The characteristics of radiation from large-scale-area samples of epitaxial graphene and from microstructures of exfoliated graphene are considered. The averaged over angles efficiency of emission is also presented.Comment: 6 pages, 5 figure

    Idling Magnetic White Dwarf in the Synchronizing Polar BY Cam. The Noah-2 Project

    Full text link
    Results of a multi-color study of the variability of the magnetic cataclysmic variable BY Cam are presented. The observations were obtained at the Korean 1.8m and Ukrainian 2.6m, 1.2m and 38-cm telescopes in 2003-2005, 56 observational runs cover 189 hours. The variations of the mean brightness in different colors are correlated with a slope dR/dV=1.29(4), where the number in brackets denotes the error estimates in the last digits. For individual runs, this slope is much smaller ranging from 0.98(3) to 1.24(3), with a mean value of 1.11(1). Near the maximum, the slope becomes smaller for some nights, indicating more blue spectral energy distribution, whereas the night-to-night variability has an infrared character. For the simultaneous UBVRI photometry, the slopes increase with wavelength from dU/dR=0.23(1) to dI/dR=1.18(1). Such wavelength dependence is opposite to that observed in non-magnetic cataclysmic variables, in an agreement to the model of cyclotron emission. The principal component analysis shows two (with a third at the limit of detection) components of variablitity with different spectral energy distribution, which possibly correspond to different regions of emission. The scalegram analysis shows a highest peak corresponding to the 200-min spin variability, its quarter and to the 30-min and 8-min QPOs. The amplitudes of all these components are dependent on wavelength and luminosity state. The light curves were fitted by a statistically optimal trigonometrical polynomial (up to 4-th order) to take into account a 4-hump structure. The dependences of these parameters on the phase of the beat period and on mean brightness are discussed. The amplitude of spin variations increases with an increasing wavelength and with decreasing brightnessComment: 30pages, 11figures, accepted in Cent.Eur.J.Phy

    Secondary electron emission yield in the limit of low electron energy

    Full text link
    Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the reflectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.Comment: 3 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital

    Solving the difference initial-boundary value problems by the operator exponential method

    Full text link
    We suggest a modification of the operator exponential method for the numerical solving the difference linear initial boundary value problems. The scheme is based on the representation of the difference operator for given boundary conditions as the perturbation of the same operator for periodic ones. We analyze the error, stability and efficiency of the scheme for a model example of the one-dimensional operator of second difference

    Dynamical mechanism of anticipating synchronization in excitable systems

    Get PDF
    We analyze the phenomenon of anticipating synchronization of two excitable systems with unidirectional delayed coupling which are subject to the same external forcing. We demonstrate for different paradigms of excitable system that, due to the coupling, the excitability threshold for the slave system is always lower than that for the master. As a consequence the two systems respond to a common external forcing with different response times. This allows to explain in a simple way the mechanism behind the phenomenon of anticipating synchronization.Comment: 4 pages including 7 figures. Submitted for publicatio

    Hyperbolic Chaos of Turing Patterns

    Full text link
    We consider time evolution of Turing patterns in an extended system governed by an equation of the Swift-Hohenberg type, where due to an external periodic parameter modulation long-wave and short-wave patterns with length scales related as 1:3 emerge in succession. We show theoretically and demonstrate numerically that the spatial phases of the patterns, being observed stroboscopically, are governed by an expanding circle map, so that the corresponding chaos of Turing patterns is hyperbolic, associated with a strange attractor of the Smale-Williams solenoid type. This chaos is shown to be robust with respect to variations of parameters and boundary conditions.Comment: 4 pages, 4 figure

    Drastic facilitation of the onset of global chaos in a periodically driven Hamiltonian system due to an extremum in the dependence of eigenfrequency on energy

    Full text link
    The Chirikov resonance-overlap criterion predicts the onset of global chaos if nonlinear resonances overlap in energy, which is conventionally assumed to require a non-small magnitude of perturbation. We show that, for a time-periodic perturbation, the onset of global chaos may occur at unusually {\it small} magnitudes of perturbation if the unperturbed system possesses more than one separatrix. The relevant scenario is the combination of the overlap in the phase space between resonances of the same order and their overlap in energy with chaotic layers associated with separatrices of the unperturbed system. One of the most important manifestations of this effect is a drastic increase of the energy range involved into the unbounded chaotic transport in spatially periodic system driven by a rather {\it weak} time-periodic force, provided the driving frequency approaches the extremal eigenfrequency or its harmonics. We develop the asymptotic theory and verify it in simulations.Comment: 5 pages, 4 figures, LaTeX, to appear PR
    corecore