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We analyze the phenomenon of anticipating synchronization of two excitable systems with unidirec-
tional delayed coupling which are subject to the same external forcing. We demonstrate for different
paradigms of excitable system that, due to the coupling, the excitability threshold for the slave system is
always lower than that for the master. As a consequence the two systems respond to a common external
forcing with different response times. This allows us to explain in a simple way the mechanism behind
the phenomenon of anticipating synchronization in excitable systems.
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The synchronization of nonlinear dynamical systems
is a phenomenon common to many fields of science [1],
and it has been an active research subject since the work
by Huygens in 1665. Recently, the synchronization of
chaotic systems in a unidirectional coupling configuration
has attracted great interest due to its potential applica-
tions to secure communication systems [2]. Particular
attention has been paid to the so-called anticipating
synchronization regime [3], where two identical chaotic
systems can be synchronized by unidirectional delayed
coupling in such a manner that the ‘‘slave’’ (the system
with coupling) anticipates the ‘‘master’’ (the one without
coupling). More specifically, the coupling scheme pro-
posed in [3] for the dynamics of the master, x�t�, and
slave, y�t� is the following:

_x � F�x� (1)

_y � F�y� �K�x�y�� (2)

where x and y are vectors, F is a vector function, � is a
delay time, y� � y�t� �� and K is a positive defined
matrix. For appropriate values of the delay time � and
coupling strength K, the basic result is that y�t� � x�t�
��, i.e., the slave ‘‘anticipates’’ by an amount � the output
of the master.

This regime has been theoretically studied in several
systems [4–6], and experimentally demonstrated in elec-
tronic circuits [7] and chaotic semiconductor lasers [8].

This same phenomenon has recently been shown to
occur also when the dynamics, instead of chaotic, is
excitable [9]. It was shown that, when both systems are
excited by the same noise, and for a certain range of
coupling parameters, the randomly distributed pulses of
the master are preceded by those of the slave. This allows
for predicting the occurrence of excitable pulses in the
master. Since many biological systems (as neurons and
heart cells) exhibit excitable behavior and often operate
in a feedback regime in a noisy environment, the study of
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the delayed coupling effects in a presence of noise is
certainly of wide concern.

The anticipating synchronization regime has been
often described as a rather counterintuitive phenomenon
because of the possibility of the slave system anticipating
the evolution of the master [3,5,7]. The aim of this paper
is to provide a simple clear physical mechanism for this
regime in delayed coupled excitable systems subject to
common forcing. When the stimuli trigger excitable
pulses, the apparent anticipation of the slave over the
master is due to a reduction of its excitability threshold
induced by the coupling term. As a consequence, the
master and the slave respond to the common external
forcing with different response times, defined as the
time needed to reach a reference level on the excitable
pulse. The proposed dynamical picture allows us to ex-
plain all the general features of the phenomenon as well
as to determine in a natural way the maximum permitted
anticipation time.

A dynamical system commonly used to study excitable
behavior is Adler’s equation for a scalar variable x, [12]

_x � �� cosx; (3)

where x is an angular variable (modulo 2�) and � the
control parameter. For j�j< 1, there are two fixed points
at x	 � 	 arccos�, one being a stable focus (x�) and the
other (x�) an unstable saddle point. If j�j> 1, there are
no fixed points, and the flow consists in an oscillation of x.
This limit cycle develops through an Andronov bifurca-
tion at �c � 	1 [13,14], where the two fixed points
collide and annihilate. For j�j< 1, the system displays
excitable behavior: after a large enough perturbation, the
system will recover its initial state (modulo 2�) through
an orbit that closely follows the heteroclinic connection
of the saddle and the node. During this orbit, the system is
barely sensitive to external perturbations.

In order to study anticipating synchronization, we con-
sider two identical Adler’s systems with delayed unidirec-
tional coupling under the effect of an external
perturbation I�t� acting simultaneously on both systems,
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FIG. 1. Time series of the master system x (solid line) and
slave system y (dashed line) subjected to white Gaussian noise
of zero-mean and correlations h��t���t0�i � D��t� t0�, ob-
tained by numerical simulation of Eqs. (4) and (5). Other
parameters are: � � 0:95, K � 0:01, and � � 1. The noise
intensity is D � 0:017.

FIG. 2. (a) Response time tr versus � for the Adler system x
perturbed by p0��t� with p0 � 2 from Eq. (6). (b) Time series
for x�t� for � � 0:95 (solid line) and � � 0:97 (dashed line).
Both systems have been perturbed at t0 � 10 by a pulse of
constant amplitude p � 1:7 and duration �t � 0:4.

FIG. 3. Response of the master (solid line) and slave (dashed
line) for three different amplitudes of the singular perturbation
of duration �t � 0:4 at time t0 � 10: (a) p � 1:7, (b) p � 1:65,
and (c) p � 1:61. Other parameters are � � 0:95, � � 5, and
K � 0:01.
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_x � �� cos�x� � I�t� (4)

_y � �� cos�y� � K�x� y�� � I�t� (5)

When I�t� � ��t� is zero-mean Gaussian noise, antici-
pating synchronization occurs as shown in Fig. 1, where
we plot the master and slave outputs for a particular value
of K > 0 and �. Note that the slave system anticipates the
firing of a pulse in the master by a time interval approxi-
mately equal to �. If we increase the coupling constant K
or the delay time � beyond some values, anticipating
synchronization is degraded; i.e., the slave system can
emit pulses which do not have a corresponding pulse in
the master’s output, although the reverse case never oc-
curs. Upon further increasing K or �, the anticipation
phenomenon disappears. The results are analogous to
those obtained in [9] for the FitzHugh-Nagumo model
[10].

In order to understand the mechanism of the observed
phenomenon, we first analyze the behavior of the master
alone under the effect of a single perturbation I�t� �
p0��t� t0�. The effect of this perturbation appears only
as a discontinuity of the x�t� variable, x�t�0 � � x�t�0 � � p0.
Assuming x�t�0 � � x�, an excitable pulse is fired if
x�t�0 �> x�, i.e., p0 > 2 arccos���. The maximum of the
pulse corresponds to xr � �=2, which happens at time
tr �

R�=2
x�t�0 �

dx
��cosx which yields

tr �
1���������������

1��2
p ln

2
66664
�1� b�

�
b�1 tan

x�t�0 �
2 � 1

�

�1� b�
�
b�1 tan

x�t�0 �
2 � 1

�
3
77775 (6)

where b �
��������
1��
1��

q
. The response time tr is plot in Fig. 2

(left panel) as a function of � for a given value of p0 Note
that below the excitability threshold, p0 < 2 arccos���, tr
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does not exist. For �> cos�p0=2� tr is a decreasing func-
tion of � which approaches zero as � ! 1. This shows
that the response time to an above-threshold external
perturbation progressively decreases as the Andronov
bifurcation point (j�j � 1) is approached, in agreement
with the numerical result shown in Fig. 2 (right panel).

The decrease of tr as the excitability threshold lowers,
and the fact that in the coupled system the slave can emit
pulses that are not followed by a pulse in the master,
suggest that the mechanism for anticipation in the
master-slave configuration is that the slave has a lower
excitability threshold than the master. This is supported
by the following qualitative argument: Imagine that at
t � t0 both systems, master and slave, are in the rest state
x�t�0 � � y�t�0 � � x�. The effect of the perturbation
changes both values to x�t�0 � � x�t�0 � � p0, y�t�0 � �
y�t�0 � � p0. Because of the coupling, the slave can be
considered to have at this time an effective �eff�t0����

K�x�t�0 ��y�t�0 �������Kp0. Since �eff�t�>� also
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FIG. 4. The ratio between the slave and the master excitabil-
ity threshold as a function of K for �1 � 0:05, �2 � 0:2, �3 �
0:35, and �4 � 0:5. Considered systems have parameter � �
0:95. Perturbation is applied at time t0 � 10 with magnitude
p � 1:635 and duration �t � 0:4. The dashed line corresponds
to the constant excitability threshold of the master.

FIG. 5. Two coupled systems (master and slave) with a cou-
pling parameter K � 0:01 and delay time (a) � � 1, (b) � � 5,
and (c) � � 50. Both systems have � � 0:95 and are perturbed
at time t0 � 60 with a pulse of magnitude p � 1:7 and duration
�t � 0:4.

FIG. 6. Time series for the variable x1 of the FitzHugh-
Nagumo system for a � �1:01 (dashed line) and a � �1:08
(solid line). In both cases it is � � 0:09. As indicated by the
vertical dotted line, the system is perturbed at a time t0 � 200
by a pulse of amplitude p � 0:4 and duration �t � 1.
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for all times t such that t0 � t < t0 � �, the excitability
threshold of the slave has been reduced and the response
time decreases.

To give a more rigorous evidence for this explanation,
we consider now two coupled systems, Eqs. (4) and (5),
where I�t� is a pulse of constant amplitude p and duration
�t acting at time t0 in which both systems are in the rest
state x�t�0 � � y�t�0 � � x�. For a sufficiently large pertur-
bation, the master and the slave respond with an excitable
spike and the slave pulse anticipates the master pulse
[Fig. 3(a)]. For small perturbations, no pulses are gener-
ated and both systems respond proportionally to the
applied stimulus [Fig. 3(c)]. Note that in this case the
slave responds later than the master, the retardation being
of the order of �. However, an intermediate amplitude of
the perturbation triggers the emission of an excitable
pulse by the slave system while the master responds
linearly [Fig. 3(b)]. This confirms a lowering of the
excitability threshold of the slave as compared to the
master (see Fig. 4), which is systematically found for all
coupling parameters that yield anticipating synchroniza-
tion. Therefore the effect of this particular coupling
scheme on the slave system is to lower its excitability
threshold in such way that the difference between the
response time of the master and the slave to an external
perturbation equals approximately the delay in the cou-
pling term, �. It is worth noting that when K or � tend
to zero, not surprisingly the thresholds for the slave
and the master tend to be equal, while for large values
of � the difference between the two thresholds is very
large. A further confirmation of this mechanism is that,
for � � 0, the slave anticipates the master whenever
�slave > �master.

Clearly, the same reasoning can be followed if the
perturbation applied to both systems is a white noise
process. This allows us to explain why the erroneous
synchronization events correspond to the slave system
firing a pulse that is not followed by a pulse in the master:
for a particular noise level the master response is propor-
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tional to the perturbation while the slave emits an excit-
able pulse. By increasing the noise level both master and
slave emit excitable pulses, each pulse of the slave antici-
pating that of the master.

Since, as we have shown, master and slave systems
respond to external perturbations with different response
times, a question which arises is whether it is possible to
chose the parameters such that the anticipation time is
arbitrarily large, in particular, larger than the master
response time, � > tr, a result that would violate the
causality principle. In order to answer this question, we
plot in Fig. 5 the results of integrating Eqs. (4) and (5)
under the effects of a single perturbation for three differ-
ent values of the parameter �. When � < tr [Fig. 5(a)] or
� � tr [Fig. 5(b)], the anticipation time is approximately
equal to �. However, when � � tr, the anticipation time
greatly differs from the delay time, such that the slave
anticipates the master by a time interval always lower
114102-3



FIG. 7. Response of the master (x1, solid line) and slave (y1,
dashed line) for two coupled FitzHugh-Nagumo systems with
a � �1:01, � � 0:09, � � 4, and K � 0:1, after perturbation at
t0 � 200 by a pulse of amplitude p and duration �t � 1. (a) For
large amplitude p � 0:4 both systems pulse, whereas (b) for
the smaller amplitude p � 0:3 there is only pulse in the slave
variable.
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than tr [Fig. 5(c)]. This is a reasonable limit to the
anticipation time: the pulse cannot anticipate the pertur-
bation which created it. In other words, master and slave
are both ‘‘slaves’’ of the external perturbation, although
the presence of the master signal into the coupling term
contributes to lowering the excitability threshold of the
slave leading to the anticipation phenomenon.

In order to assess the generality of our hypothesis, we
have also considered two delayed coupled scalar
FitzHugh-Nagumo systems:

� _x1; _x2� �

x2 � x1 �

x31
3
; ��a� x1�

�
; (7)

� _y1; _y2� �

y2 � y1 �

y31
3
�K�x1 � y1;��; ��a� y1�

�
: (8)

In the excitable regime, which occurs when jaj> 1, the
system possesses a single steady state. As the critical
value jacj � 1 is approached, the excitability threshold
is lowered [15]. In this sense, the control parameter a
plays the same role as the parameter � in Adler’s equa-
tion. In fact, we have checked that also in this case the
response time of the system to an external perturbation
decreases as the critical value ac is approached (see
Fig. 6).

For the unidirectionally delayed coupled system we
find, as before, that the excitability threshold for the slave
is lower than that of the master (see Fig. 7) and that the
maximum anticipation time is limited by the response
time of the master. The same phenomenology has also
been observed for two delayed coupled Hodgkin-Huxley
systems [11].
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The ubiquity of this effect is, in our opinion, an in-
dication that the lowering of the excitability threshold of
the slave in a delayed coupling scheme is a general
mechanism for anticipating synchronization in excitable
systems. This mechanism allows us to explain the phe-
nomenon in such dynamical systems and it evidences its
causality: the master and slave systems follow the applied
external perturbations, although the response time of the
slave system is shorter due to the effects of the coupling.
Moreover, we have shown that the anticipation time is
limited by the response time of the master system. The
relevance of this type of mechanism for the synchroni-
zation of coupled chaotic systems is an open question that
will be studied in the near future.
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