265 research outputs found

    Self-force and motion of stars around black holes

    Full text link
    Through detection by low gravitational wave space interferometers, the capture of stars by supermassive black holes will constitute a giant step forward in the understanding of gravitation in strong field. The impact of the perturbations on the motion of the star is computed via the tail, the back-scattered part of the perturbations, or via a radiative Green function. In the former approach, the self-force acts upon the background geodesic, while in the latter, the geodesic is conceived in the total (background plus perturbations) field. Regularisations (mode-sum and Riemann-Hurwitz ζ\zeta function) intervene to cancel divergencies coming from the infinitesimal size of the particle. The non-adiabatic trajectories require the most sophisticated techniques for studying the evolution of the motion, like the self-consistent approach.Comment: To be published on 21 Rencontres de Blois: Windows on the Universe, http://confs.obspm.fr/Blois2009/, 4 pages 1 figur

    Satellite measurement of the Hannay angle

    Full text link
    The concept of a measurement of the yet unevaluated Hannay angle, by means of an Earth-bound satellite, adiabatically driven by the Moon, is shown herein. Numerical estimates are given for the angles, the orbital displacements, the shortening of the orbital periods, for different altitudes. It is concluded that the Hannay effect is measurable in high Earth orbits, by means of atomic clocks, accurate Time & Frequency transfer system and precise positioning.Comment: Lette

    A source-free integration method for black hole perturbations and self-force computation: Radial fall

    Full text link
    Perturbations of Schwarzschild-Droste black holes in the Regge-Wheeler gauge benefit from the availability of a wave equation and from the gauge invariance of the wave function, but lack smoothness. Nevertheless, the even perturbations belong to the C\textsuperscript{0} continuity class, if the wave function and its derivatives satisfy specific conditions on the discontinuities, known as jump conditions, at the particle position. These conditions suggest a new way for dealing with finite element integration in time domain. The forward time value in the upper node of the (t,r∗(t, r^*) grid cell is obtained by the linear combination of the three preceding node values and of analytic expressions based on the jump conditions. The numerical integration does not deal directly with the source term, the associated singularities and the potential. This amounts to an indirect integration of the wave equation. The known wave forms at infinity are recovered and the wave function at the particle position is shown. In this series of papers, the radial trajectory is dealt with first, being this method of integration applicable to generic orbits of EMRI (Extreme Mass Ratio Inspiral).Comment: This arXiv version differs from the one to be published by Phys. Rev. D for the use of British English and other minor editorial difference

    Indirect (source-free) integration method. II. Self-force consistent radial fall

    Get PDF
    We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall affected by the self-force. The Mode-Sum regularisation is performed in the Regge-Wheeler gauge using the equivalence with the harmonic gauge for this orbit. We consider also the motion subjected to a self-consistent and iterative correction determined by the self-force through osculating stretches of geodesics. The convergence of the results confirms the validity of the integration method. This work complements and justifies the analysis and the results appeared in Int. J. Geom. Meth. Mod. Phys., 11, 1450090 (2014).Comment: To appear in Int. J. Geom. Meth. Mod. Phy

    Solar wind test of the de Broglie-Proca's massive photon with Cluster multi-spacecraft data

    Get PDF
    Our understanding of the universe at large and small scales relies largely on electromagnetic observations. As photons are the messengers, fundamental physics has a concern in testing their properties, including the absence of mass. We use Cluster four spacecraft data in the solar wind at 1 AU to estimate the mass upper limit for the photon. We look for deviations from Amp\`ere's law, through the curlometer technique for the computation of the magnetic field, and through the measurements of ion and electron velocities for the computation of the current. We show that the upper bound for mγm_\gamma lies between 1.4×10−491.4 \times 10^{-49} and 3.4×10−513.4 \times 10^{-51} kg, and thereby discuss the currently accepted lower limits in the solar wind.Comment: The paper points out that actual photon mass upper limits (in the solar wind) are too optimistic and model based. We instead perform a much more experiment oriented measurement. This version matches that accepted by Astroparticle Physic
    • 

    corecore