597 research outputs found

    Large-Scale Structure in Brane-Induced Gravity II. Numerical Simulations

    Full text link
    We use N-body simulations to study the nonlinear structure formation in brane-induced gravity, developing a new method that requires alternate use of Fast Fourier Transforms and relaxation. This enables us to compute the nonlinear matter power spectrum and bispectrum, the halo mass function, and the halo bias. From the simulation results, we confirm the expectations based on analytic arguments that the Vainshtein mechanism does operate as anticipated, with the density power spectrum approaching that of standard gravity within a modified background evolution in the nonlinear regime. The transition is very broad and there is no well defined Vainshtein scale, but roughly this corresponds to k_*~ 2 at redshift z=1 and k_*~ 1 at z=0. We checked that while extrinsic curvature fluctuations go nonlinear, and the dynamics of the brane-bending mode C receives important nonlinear corrections, this mode does get suppressed compared to density perturbations, effectively decoupling from the standard gravity sector. At the same time, there is no violation of the weak field limit for metric perturbations associated with C. We find good agreement between our measurements and the predictions for the nonlinear power spectrum presented in paper I, that rely on a renormalization of the linear spectrum due to nonlinearities in the modified gravity sector. A similar prediction for the mass function shows the right trends. Our simulations also confirm the induced change in the bispectrum configuration dependence predicted in paper I.Comment: 19 pages, 13 figures. v2: corrected typos, added more simulations, better test of predictions in large mass regime. v3: minor changes, published versio

    SSID Protocol for Data Collection of Urban Soundscapes: In situ audio-video recordings & questionnaires

    Get PDF
    A protocol for characterising urban soundscapes for use in the design of Soundscape Indices (SSID) and general soundscape research as implemented under the ERC-funded SSID project is described in detail. The protocol consists of (1) audio-visual recordings for use in virtual reality-based laboratory experiments, and (2) in situ soundscape assessments via a questionnaire method paired with acoustic data collection. The data collected under this protocol will form a large-scale, international soundscape database

    The Soundscape Indices (SSID) Protocol: A Method for Urban Soundscape Surveys—Questionnaires with Acoustical and Contextual Information

    Get PDF
    A protocol for characterizing urban soundscapes for use in the design of Soundscape Indices (SSID) and general urban research as implemented under the European Research Council (ERC)-funded SSID project is described in detail. The protocol consists of two stages: (1) a Recording Stage to collect audio-visual recordings for further analysis and for use in laboratory experiments, and (2) a Questionnaire Stage to collect in situ soundscape assessments via a questionnaire method paired with acoustic data collection. Key adjustments and improvements to previous methodologies for soundscape characterization have been made to enable the collation of data gathered from research groups around the world. The data collected under this protocol will form a large-scale, international soundscape database

    Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach

    Get PDF
    The unprecedented lockdowns resulting from COVID-19 in spring 2020 triggered changes in human activities in public spaces. A predictive modeling approach was developed to characterize the changes in the perception of the sound environment when people could not be surveyed. Building on a database of soundscape questionnaires (N = 1,136) and binaural recordings (N = 687) collected in 13 locations across London and Venice during 2019, new recordings (N = 571) were made in the same locations during the 2020 lockdowns. Using these 30-s-long recordings, linear multilevel models were developed to predict the soundscape pleasantness ( R2=0.85) and eventfulness ( R2=0.715) during the lockdown and compare the changes for each location. The performance was above average for comparable models. An online listening study also investigated the change in the sound sources within the spaces. Results indicate (1) human sounds were less dominant and natural sounds more dominant across all locations; (2) contextual information is important for predicting pleasantness but not for eventfulness; (3) perception shifted toward less eventful soundscapes and to more pleasant soundscapes for previously traffic-dominated locations but not for human- and natural-dominated locations. This study demonstrates the usefulness of predictive modeling and the importance of considering contextual information when discussing the impact of sound level reductions on the soundscape

    An Autoantibody with U‐specificity in a Patient with Myasthenia Gravis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136515/1/trf00048.pd

    Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders

    Get PDF
    There has been debate over whether disruptions in the mirror neuron system (MNS) play a key role in the core social deficits observed in autism spectrum disorders (ASD). EEG mu suppression during the observation of biological actions is believed to reflect MNS functioning, but understanding of the developmental progression of the MNS and EEG mu rhythm in both typical and atypical development is lacking. To provide a more thorough and direct exploration of the development of mu suppression in individuals with ASD, a sample of 66 individuals with ASD and 51 typically developing individuals of 6-17 years old were pooled from four previously published studies employing similar EEG methodology. We found a significant correlation between age and mu suppression in response to the observation of actions, both for individuals with ASD and typical individuals. This relationship was not seen during the execution of actions. Additionally, the strength of the correlation during the observation of actions did not significantly differ between groups. The results provide evidence against the argument that mirror neuron dysfunction improves with age in individuals with ASD and suggest, instead, that a diagnosis-independent developmental change may be at the root of the correlation of age and mu suppression

    Ray-based calculations of backscatter in laser fusion targets

    Full text link
    A 1D, steady-state model for Brillouin and Raman backscatter from an inhomogeneous plasma is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code DEPLETE, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as "plane-wave" simulations with the paraxial propagation code pF3D. Comparisons with Brillouin-scattering experiments at the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)] show that laser speckles greatly enhance the reflectivity over the DEPLETE results. An approximate upper bound on this enhancement, motivated by phase conjugation, is given by doubling the DEPLETE coupling coefficient. Analysis with DEPLETE of an ignition design for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755 (1994)], with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Re-absorption of Raman light is seen to be significant in this design.Comment: 16 pages, 19 figure

    Exploring relationships between soundscape and lightscape perception: A case study around the Colosseum and Fori Imperiali in Rome

    Get PDF
    Recently, there has been a growing interest to implement a holistic approach to study perception in urban settings with historic value, in which environmental factors such as acoustics and lighting play an important role. However, little research has addressed sound and light in combination. In this exploratory field study, a soundscape and lightscape protocol was implemented to gather both objective and subjective data. In all, 46 people joined a group walk around the historical sites of Colosseum and Fori Imperiali in Rome. Participants assessed the soundscape and lightscape quality via questionnaire at four locations, immediately before and after the sunset in April 2021. Acoustic parameters (A-weighted equivalent sound level, loudness, sharpness, roughness) and lighting parameters (luminance, colour rendering index and correlated colour temperature) were measured at each location while participants filled in the questionnaire. While there was little variation in the acoustic parameters measured before and after the sunset walks, changes were observed in perceptual data about the soundscape. These outcomes reveal a potential effect of lighting conditions on soundscape perception

    Bright light decreases peripheral skin temperature in healthy men:A forced desynchrony study under dim and bright light (II)

    Get PDF
    Human thermoregulation is strictly regulated by the preoptic area of the hypothalamus, which is directly influenced by the suprachiasmatic nucleus (SCN). The main input pathway of the SCN is light. Here, thermoregulatory effects of light were assessed in humans in a forced desynchrony (FD) design. The FD experiment was performed in dim light (DL, 6 lux) and bright white light (BL, 1300 lux) in 8 men in a semi-randomized within-subject design. A 4 × 18 h FD protocol (5 h sleep, 13 h wake) was applied, with continuous core body temperature (CBT) and skin temperature measurements at the forehead, clavicles, navel, palms, foot soles and toes. Skin temperature parameters indicated sleep-wake modulations as well as internal clock variations. All distal skin temperature parameters increased during sleep, when CBT decreased. Light significantly affected temperature levels during the wake phase, with decreased temperature measured at the forehead and toes and increased navel and clavicular skin temperatures. These effects persisted when the lights were turned off for sleep. Circadian amplitude of CBT and all skin temperature parameters decreased significantly during BL exposure. Circadian proximal skin temperatures cycled in phase with CBT, while distal skin temperatures cycled in anti-phase, confirming the idea that distal skin regions reflect heat dissipation and proximal regions approximate CBT. In general, we find that increased light intensity exposure may have decreased heat loss in humans, especially at times when the circadian system promotes sleep

    Bright light increases alertness and not cortisol in healthy men:A forced desynchrony study under dim and bright light (I)

    Get PDF
    Light-induced improvements in alertness are more prominent during nighttime than during the day, suggesting that alerting effects of light may depend on internal clock time or wake duration. Relative contributions of both factors can be quantified using a forced desynchrony (FD) designs. FD designs have only been conducted under dim light conditions (<10 lux) since light above this amount can induce non-uniform phase progression of the circadian pacemaker (also called relative coordination). This complicates the mathematical separation of circadian clock phase from homeostatic sleep pressure effects. Here we investigate alerting effects of light in a novel 4 × 18 h FD protocol (5 h sleep, 13 h wake) under dim (6 lux) and bright light (1300 lux) conditions. Hourly saliva samples (melatonin and cortisol assessment) and 2-hourly test sessions were used to assess effects of bright light on subjective and objective alertness (electroencephalography and performance). Results reveal (1) stable free-running cortisol rhythms with uniform phase progression under both light conditions, suggesting that FD designs can be conducted under bright light conditions (1300 lux), (2) subjective alerting effects of light depend on elapsed time awake but not circadian clock phase, while (3) light consistently improves objective alertness independent of time awake or circadian clock phase. Reconstructing the daily time course by combining circadian clock phase and wake duration effects indicates that performance is improved during daytime, while subjective alertness remains unchanged. This suggests that high-intensity indoor lighting during the regular day might be beneficial for mental performance, even though this may not be perceived as such
    corecore