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Investigating urban soundscapes of the COVID-19 lockdown:
A predictive soundscape modeling approacha)
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ABSTRACT:
The unprecedented lockdowns resulting from COVID-19 in spring 2020 triggered changes in human activities in

public spaces. A predictive modeling approach was developed to characterize the changes in the perception of the

sound environment when people could not be surveyed. Building on a database of soundscape questionnaires

(N¼ 1,136) and binaural recordings (N¼ 687) collected in 13 locations across London and Venice during 2019, new

recordings (N¼ 571) were made in the same locations during the 2020 lockdowns. Using these 30-s-long recordings,

linear multilevel models were developed to predict the soundscape pleasantness (R2 ¼ 0:85) and eventfulness

(R2 ¼ 0:715) during the lockdown and compare the changes for each location. The performance was above average

for comparable models. An online listening study also investigated the change in the sound sources within the

spaces. Results indicate (1) human sounds were less dominant and natural sounds more dominant across all loca-

tions; (2) contextual information is important for predicting pleasantness but not for eventfulness; (3) perception

shifted toward less eventful soundscapes and to more pleasant soundscapes for previously traffic-dominated loca-

tions but not for human- and natural-dominated locations. This study demonstrates the usefulness of predictive

modeling and the importance of considering contextual information when discussing the impact of sound level

reductions on the soundscape. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0008928

(Received 5 August 2021; revised 10 November 2021; accepted 11 November 2021; published online 28 December 2021)
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I. INTRODUCTION

The global emergency caused by the COVID-19 pan-

demic in early 2020 required national lockdown measures

across the world, primarily targeting human activity. In the

United Kingdom, construction and transport were allowed

to continue, but a decrease in activity was observed

(Hadjidemetriou et al., 2020). In other countries, such as

Italy, the restrictions were more severe and even included

limiting people’s movement to a certain radius from their

place of residence (Ren, 2020). The explorations in environ-

mental acoustics of lockdown conditions across the world

have revealed various degrees of impact on the acoustic

environment with researchers reporting reductions in noise

levels affecting the population at the scale of urban agglom-

erations such as Ruhr Area in Germany (Hornberg et al.,
2021) and conurbations in the south of France (Munoz

et al., 2020). Impacts have also been reported at a scale of a

multimillion city such as Madrid (Asensio et al., 2020b) or

Barcelona (Bonet-Sol�a et al., 2021), as well as at a more

local, city-center or even public space-scale in cities such as

Stockholm (Rumpler et al., 2021), London (Aletta et al.,
2020), Girona (Alsina-Pagès et al., 2021), or Granada (Vida

Manzano et al., 2021). In general, these studies have demon-

strated a decrease in urban noise levels and indicated a dif-

ference in the amount that the level decreased, depending on

the type of space investigated (e.g., parks, urban squares,

etc.) and the type of human activity characteristic for the

space, with higher reductions in places typically associated

with human sounds and activities such as shopping and

tourism.

Those studies were mostly focused around the LAeq, as

well as a standardization approach to reporting subsequent

changes in the soundscape, proposed by Asensio et al.
(2020a). They were not able to reveal the perceptual impact

of such conditions in public spaces because of (1) the lack

of subjective data for the exact or comparable locations in

previous years; and (2) the lack of participants present in

public spaces during the lockdown, hence, the inability to

collect soundscape data in situ. Munoz et al. (2020) com-

bined noise measurements with an online questionnaire

deployed to residents, some of which were residing in the

areas covered by the noise monitoring network available.

The participants were asked to recall how their lockdown

area sounded before and during the first lockdown in 2020

and describe the perceived change. They observed a consis-

tent reduction in levels, followed by the perceived reduction

of transport sounds (air and road) and an increase in natural
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sounds, whereas the resulting environment was described as

pleasant, calm, and peaceful. By combining field recordings

and focus groups, Sakagami (2020) and Lenzi et al. (2021)

observed changes in the sound source composition and the

affective quality of the soundscape in a residential area in

Kobe, Japan and a public space in Getxa, Spain, respec-

tively, during the different stages of the lockdown period.

Following the easing of the lockdown measures, a decrease

in animal and traffic sounds was observed in Kobe, whereas

an increase in eventfulness, loudness, and presence of

human sound sources, followed by a decrease in pleasant-

ness, was shown in Getxa.

Aletta et al. (2020) explored the impacts of the COVID-

19 lockdowns on the acoustic environment in London, in

particular, through many short-term (30 s) binaural record-

ings. This study revealed that average reductions in the vari-

ous locations considered ranged from 10.7 (LAeq) to 1.2 dB

with an overall average reduction of 5.4 dB. This metric-

reporting focused approach left the following research ques-

tions unanswered: how would people have perceived these

spaces as a result of this change in the acoustic environ-

ment? (RQ1) and would these sound level reductions result

in improvements to the soundscape of the spaces (RQ2)?

The first research question (RQ1), addressing the perceptual

effect of the change in the urban soundscape induced by the

lockdowns, can be further broken down into the following

questions: how was the sound source composition influ-

enced by the change?; how would the affective response to

the acoustic environment in the lockdowns change?; and

could this demonstrate the effect of human activities on the

perception of an acoustic environment in general?

These questions arise out of the soundscape approach,

which is characterized by prioritizing the perceptual effect

of an acoustic environment by taking into account the inter-

action of the sound sources, context, and the person perceiv-

ing it (ISO, 2014; Truax, 1999), bringing together objective

and subjective factors. The soundscape approach to noise

mitigation and management is being recognized as a

response to the arising environmental requirements on noise

pollution and sustainability such as the regulation of quiet

areas in Europe (European Environment Agency, 2020;

Kang and Aletta, 2018; Radicchi et al., 2021). This has been

further formalized in ISO/TS (2018) via the adoption of the

circumplex model of soundscape (Axelsson et al., 2010), in

which the perception of a soundscape can be described in

terms of its pleasantness and eventfulness, as one of the

standard methods of soundscape assessment.

Soundscape research is, therefore, traditionally rooted

in environmental acoustics and environmental psychology,

typically dealing with outdoor spaces (Torresin et al., 2020)

and urban open spaces, where parks and squares are often

used as case study sites (Kang, 2007). A soundscape assess-

ment typically requires people to be surveyed, but the pres-

ence of people at a location influences the assessment

(Aletta and Kang, 2018) and “quiet places” usually require

low numbers of users to remain quiet, which limits the pos-

sibility of an assessment. Even in a crowded public space,

soundscape surveys are demanding as they require signifi-

cant resources to perform at scale, limiting their widespread

application (Mitchell et al., 2020). Therefore, a need for a

predictive model arises to overcome this limitation and

improve the implementation of the soundscape approach

into everyday planning and management practices.

According to a recent review of predictive soundscape

models from Lionello et al. (2020), the degree of employing

auditory and nonauditory factors in soundscape prediction

varies with some studies relying on contextual, personal/

demographic (Erfanian et al., 2021; Tarlao et al., 2021), or

social media (Aiello et al., 2016) data entirely to predict and

generate the soundscape features. Some methods also incor-

porate perceptually derived features, such as subjective

sound level and visual pleasantness, as predictors (Lionello

et al., 2020). In general, these methods, which incorporate

perceptually derived inputs, achieve better accuracy rates

than those which do not; however, this perception informa-

tion must also be obtained from people via a survey and,

therefore, are unsuitable for predictive modeling, where sur-

veys are not possible. For example, Ricciardi et al. (2015)

proposed two models based on data collected from a smart-

phone application to predict urban sound quality indicators

based on linear regressions. The first model, which incorpo-

rated perceptually derived input features (visual quality and

familiarity), achieved an R2 of 0.72, whereas a second

model without these features achieved an R2 of 0.58. This

indicates the necessity for considering and accounting for

the influence which contextual factors in a space have on the

relationship between the sound environment itself and the

listener’s perception of it (i.e., the soundscape) while also

highlighting the challenges associated with a predictive

model, which depends only on measurable features.

Therefore, a third research question arises: what are the

key features needed for a soundscape prediction model

based on comprehensive acoustic on-site measurements to

be used for assessing locations with low social presence or

in situations where conducting surveys is impractical

(RQ3)?

II. MATERIALS AND METHODS

This study was conducted via initial on-site data collec-

tion campaigns in Central London and Venice in 2019

before the outbreak of COVID-19 as part of the Soundscape

Indices (SSID) project (Mitchell et al., 2020) and in 2020

during the strictest part of the lockdowns (Aletta et al.,
2020), including objective acoustic data (2019 and 2020)

and subjective responses (2019 only). The full in situ data-

set, as described in this section, has been made publicly

available as “The International Soundscape Database

(V0.2.1)” on Zenodo1 (Mitchell et al., 2021).

Using the 2019 and 2020 binaural recordings, an online

listening experiment was conducted to provide an under-

standing about the change in the sound source composition.

The 2019 on-site questionnaire data were used to define the

dominant sound source at each location as a starting point

for interpreting the soundscape change. A predictive model
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was developed to reveal the change in the perceived pleas-

antness and eventfulness using the objective acoustic data

and location to predict the subjective responses. Although

the initial (2019) dataset contains additional locations (spe-

cifically, in Spain, the Netherlands, and China), due to the

nature of this study as a reaction to the strict movement and

activity restrictions, the sites which could be included in the

lockdown (2020) measurement campaigns were limited to

the locations where the staff and equipment had access and

recordings could be undertaken during the spring of 2020.

The sites were selected to provide a mixture of sizes

and uses, varying in typology and ranging from paved

squares to small and large parks to waterside spaces across

both cities. Throughout the text, they are indexed via a

“LocationID” based on the location’s name (e.g.,

CamdenTown, SanMarco), and a more in-depth overview of

each is given in the supplementary material.2 London is

taken as an example of a large, typically noisy city and the

Venice sample provides a unique look at spaces with typi-

cally very high human activity levels and no road traffic

activity. In particular, the 2019 Venice surveys were taken

to coincide with the yearly Carnevale festival to capture its

distinct soundscape.

The ISO/TS (2018) series was consulted for reporting

on the soundscape data. A detailed description of the 2019

survey campaigns is featured throughout the paper and in

the public database.1 This study was approved by the depart-

mental University College London (UCL) Institute for

Environmental Design and Engineering (IEDE) Ethics

Committee on 17 July 2018 for the on-site data collection

and 2 June 2020 for the online listening experiment and is

conducted in adherence to the ethical requirements of the

Declaration of Helsinki (World Medical Association, 2013).

A. On-site data: Questionnaires, binaural
measurements, and recordings

The initial on-site data collection featured questionnaire

data collected from the general public and acoustic measure-

ments, conducted across 13 urban locations (in London

N¼ 11, in Venice N¼ 2) between 28 February and 21 June

2019 with additional sessions in July and October 2019.

Although the total survey period in 2019 extended over sev-

eral seasons, the surveys at any individual location did not

extend over seasons with different occupancy patterns. A

total of 1318 questionnaire responses were collected from

the general population across the measurement points during

1–3-h-long campaigns in both cities in 2019, accompanied

by 693 approximately 30-s-long 24-bit 44.1 kHz binaural

recordings. After data cleaning, each of the 13 locations was

characterized by between 14 and 80 recordings and between

24 and 147 questionnaire responses. The mean age of the

participants was 33.8 years old with a standard deviation of

14.57 (45% male, 53.8% female, 0.4% nonconforming,

0.9% prefer-not-to-say).

Although recent results from both Tarlao et al. (2021)

and Erfanian et al. (2021) indicate the important influence

of personal and demographic factors—in particular, age and

gender—on the soundscape perception, these factors were

not included as potential features in the modeling process.

Given the nature of this study as addressing a scenario when

people could not be surveyed, no additional demographic

information is available in the lockdown case to be fed into

the model and is, therefore, not useful to include for the

development and application of this specific predictive

model. This information is reported throughout the study

simply to provide further context to the data collection.

The subsequent measurement campaign in 2020 mim-

icked the binaural recording strategy applied in the initial

campaign and was performed between 6 and 25 April 2020 in

both cities, this time excluding the questionnaire. An addi-

tional 571 binaural recordings were collected on-site in 2020.

1. Data collection

The 2019 data collection was performed across all of

the locations using the protocol based on Method A of ISO/

TS (2018) as described in Aletta et al. (2020) and Mitchell

et al. (2020), collected either via handheld tablets or paper

copies of the questionnaire. The full questionnaire and data

collection procedure are given in Mitchell et al. (2020);

however, the key parts used for this study are those address-

ing the sound source dominance and perceived affective

quality (PAQ).

The participants are first asked to rate the perceived

dominance of several sound sources as assessed via a five-

point Likert scale, coded from one (not at all) to five

(dominates completely). The sound sources are split into

four categories, traffic noise, other noise, human sounds,

and natural sounds, and each is rated separately. Next are

the eight PAQs, which make up the circumplex model of

soundscape (Axelsson et al., 2010): pleasant, chaotic,

vibrant, uneventful, calm, annoying, eventful, and monoto-

nous. These are assessed on a five-point Likert scale from

one (strongly disagree) to five (strongly agree). To simplify

the results and allow for modeling the responses as continu-

ous values, the eight PAQs undergo a trigonometric projec-

tion to reduce them onto the two primary dimensions of

pleasant and eventful, according to the procedure outlined in

Part 3 of the International Organization for Standardization

(ISO) 12913 series (ISO/TS, 2019). To distinguish the pro-

jected values from the Likert-scale PAQ responses, the pro-

jected values will be referred to as ISOPleasant and

ISOEventful and can be considered to form an x-y coordi-

nate point (x¼ ISOPleasant, y¼ ISOEventful) as explained

in detail in Lionello et al. (2021).

The calibrated binaural device SQobold with BHS II by

Head Acoustics (GmbH, Herzogenrath, Germany) was used

in both campaigns at all of the locations by various opera-

tors to capture the acoustic data as mentioned in the

Acknowledgments. Following the established on-site proto-

col (Mitchell et al., 2020), when participants were stopped

in a group and filled in their responses simultaneously, a sin-

gle binaural recording was used to capture their experience

as a group. The purpose behind this sampling strategy was

to obtain data from the perspective of a typical user,
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corresponding to a range of individual experiences available

within an urban open space. These recordings are indexed

by a “GroupID” such that the recording for each group is

matched up to each of the corresponding respondents and

their individual survey responses.

2. Data cleaning

The cleaning of the samples was conducted using the

ArtemiS SUITE 11 (HEAD Acoustics GmbH, Herzogenrath,

Germany). The researcher discarded or cropped whole

recordings or its parts affected by wind gusts or containing

noises and speech generated by the recording operator by

accident or for the purpose of explaining the questionnaire to

a participant. This resulted in 1258 binaural recordings, which

were then processed further as described in Sec. II A 3. The

psychoacoustic analyses are shown in the publicly available

database.1

To maintain the data quality and exclude the cases in

which the respondents either clearly did not understand the

PAQ adjectives or intentionally misrepresented their

answers, surveys for which the same response was given for

every PAQ (e.g., “strongly agree” to all eight attributes) were

excluded prior to calculating the International Organization

for Standardization (ISO) projected values. This is justified

as no reasonable respondent who understood the questions

would answer that they “strongly agree” that a soundscape is

pleasant and annoying, calm, and chaotic, etc. The cases in

which the respondents answered “neutral” to all of the PAQs

are not excluded in this way, as a neutral response to all

attributes is not necessarily contradictory. In addition, sur-

veys were discarded as incomplete if more than 50% of the

PAQ and sound source questions were not completed.

The site characterization per ISO/TS (2018) is available

in the supplementary material2 and public database,1 featur-

ing the address, overall psychoacoustic characteristics of the

location, typical use of each location, and pictures taken

during the survey sessions.

3. Psychoacoustic analyses

The binaural recordings were analyzed in ArtemiS

SUITE 11 (HEAD Acoustics GmbH, Herzogenrath,

Germany) to calculate the suite of 11 acoustic and psycho-

acoustic features given in Table I to be used as the initial

predictors. The (psycho)acoustic predictors investigated

were selected to describe the many aspects of the recorded

sound, in particular, the goal was to move beyond a focus on

the sound level, which currently dominates the existing liter-

ature on the acoustic effects of lockdowns noted in Sec. I. In

all, they are expected to reflect the sound level (LAeq), per-

ceived sound level (loudness), spectral content (sharpness,

LCeq � LAeq, tonality), temporal character, or predictability

(impulsiveness, fluctuation strength, relative approach), and

overall annoyance (psychoacoustic annoyance). These met-

rics have been proposed as indicators to predict the percep-

tual constructs of the soundscape (Aletta et al., 2016; Aletta

et al., 2017) and have shown promise when combined

together to form a more comprehensive model applied to

real-world sounds (Orga et al., 2021). The maximum value

from the left and right channels of the binaural recording are

used, as suggested in ISO/TS (2019).

Table II shows the Pearson correlation coefficient between

each of the candidate acoustic features and the outcome pleas-

antness and eventfulness. As all of the variables considered are

continuous, and the eventual model is linear, the Pearson coef-

ficient is chosen as a measure of the strength of the linear rela-

tionship between two continuous variables. For ISOPleasant

(ISOPl), we can, perhaps, see three tiers of correlations: the

more highly correlated tier ðjrj > 0:28Þ consists of the relative

approach (RA), LAeq, roughness (R), loudness (N5), and psy-

choacoustic annoyance (PA); the low correlation tier consists

of LA10 � LA90, tonality (T), and fluctuation strength (FS);

whereas LCeq � LAeq, impulsiveness (I), and sharpness (S)

show no correlation. For ISOEventful (ISOEv), these tiers are

RA, LAeq, T, R, and N5 comprise the most correlated tier

ðjrj > 0:30Þ; LCeq � LAeq, LA10 � LA90, FS, and PA show low

correlations; I and S show no correlation.

Among the intercorrelations for the psychoacoustic

metrics considered for inclusion as input features, we can

see several very highly correlated features (i.e., >0.9). As

expected, PA, LAeq, and N5 are highly correlated, meaning

that careful consideration is paid to these features to ensure

that they do not contribute to multicollinearity in the final

model.

B. Modeling

Two linear multilevel models (MLM) were computed

to predict (1) ISOPleasant and (2) ISOEventful. These mod-

els are trained on the 2019 data only, and then applied to

the acoustic data collected during the 2020 lockdowns, the

results of which are reported in Sec. III. The inherent

grouped structure of the SSID database necessitates a

modeling and analysis approach which considers the differ-

ing relationships between the objective acoustic features and

TABLE I. The psychoacoustic features considered for inclusion in the pre-

dictive models. All of the metrics are calculated for the full length of the

recording (�30 s). As recommended by ISO (2017) and ISO/TS (2018), the

fifth percentile of loudness is used rather than the average.

Feature Symbol Unit Calculation method

Loudness

(fifth percentile)

N5 sones ISO (2017)

Sharpness S acum ISO (2017)

Roughness R asper ECMA (2020)

Impulsiveness I iu ECMA (2020)

Fluctuation strength FS vacil ECMA (2020)

Tonality T tuHMS Sottek (2016)

Psychoacoustic

annoyance

PA — Zwicker and Fastl (2007)

LAeq LAeq dB IEC (2013)

LA10 � LA90 LA10 � LA90 dB ISO (2016)

LCeq � LAeq LCeq � LAeq dB ISO (2016)

Relative approach RA cPA Sottek and Genuit (2005)
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the soundscape’s PAQ ratings across the various locations

and contexts. The individual-level of the models is made up

of the acoustic features calculated from the binaural record-

ings made during each respondent’s survey period, whereas

the group-level includes the categorical LocationID vari-

able, indicating the location in which the survey was taken,

acting as a nonauditory contextual factor.

A separate backward-step feature selection was per-

formed for each of the outcome models to identify the mini-

mal feature set to be used for predicting each outcome. In

this feature selection process, an initial model containing all

of the candidate features was fit. Each feature was then

removed from the model one at a time, then the best-

performing model is selected, and the procedure continues

stepwise until no improvement is seen by removing more

features. This process is performed first on the location-

level features (including the potential to remove all features,

including LocationID, resulting in a “flat” or standard

multivariate linear regression model), and then on the

individual-level features. The performance criterion used for

this process was the Akaike information criterion (AIC;

Akaike, 1974). To check for multicollinearity among the

selected features, the variance inflation factor (VIF) was cal-

culated and a threshold of VIF < 5 was set. Any features

which remained after the backward stepwise selection and

exceeded this threshold were investigated and removed if

they were highly collinear with the other features.

All of the input features are numeric values in the units

described above. Before conducting the feature selection,

the input features are z-scaled to enable a proper comparison

of their effect sizes. After the feature selection, the scaled

coefficients are used in the text when reporting the final fit-

ted models to facilitate the discussion and comparison

between the features. The unscaled model coefficients are

reported in Appendix B to enable the models to be applied

to new data. To properly assess the predictive performance

of the model, an 80/20 train-test split with a balanced shuffle

across LocationIDs was used. The z-scaling and feature

selection were performed on the training set only to prevent

data leakage. To score the performance of the model on the

training and testing sets, we use the mean absolute error

(MAE), which is in the scale of the response feature—for

ISOPleasant, this means our response can range from -1 to

þ1. However, because the end-goal of the model is to pre-

dict the soundscape assessment of the location as a whole,

rather than the individual responses, we also assess the per-

formance of the model in predicting the average response in

each location. To do this, the mean response value for each

location is calculated, and the R2 accuracy across

LocationIDs is reported for the training and testing sets.

The model fitting and feature selection was performed

using the “step” function from lmerTest (v3.1.3;

Kuznetsova et al., 2017) in R statistical software (v4.0.3; R
Core Team, 2020). The summaries and plots were created

using the sjPlot package (v2.8.6; L€udecke, 2021) and sea-

born (v0.11.1; Waskom, 2021).

C. Online survey

An online listening test was conducted using the Gorilla

Experiment Builder3 (Anwyl-Irvine et al., 2020). The partic-

ipants were exposed to a random selection of 78 binaural

recordings (39 from 2019 and 39 from 2020, 6 recordings

per location). Each participant had the option to evaluate

either 1 or 2 sets of 6 recordings randomly assigned between

13 stimuli sets. mp3 files, converted at 256 kBps, were used

due to the requirements of the Gorilla platform.

No visual stimuli were used in the experiment. The

experiment consisted of (1) an initial exercise to enhance

the chances of participants complying to the instructions and

wearing headphones; (2) a training set using two randomly

chosen binaural recordings (then not used in the main task)

from the dataset; (3) a soundscape characterization question-

naire starting with an open-ended question about the per-

ceived sound sources and featuring the same questions as

the one used in situ, looking into the PAQ of the soundscape

and the perceived sound source dominance of the following

four types: traffic noise, other noise, human sounds, and nat-

ural sounds; (4) a questionnaire on the basic demographic

TABLE II. The Pearson correlation coefficients between the candidate acoustic features and ISOPleasant and ISOEventful across all 13 locations. Only the

statistically significant (p < 0.01) coefficients are shown.

Parameter ISOPl ISOEv PA N5 S R I FS T LAeq LA10 � LA90 LCeq � LAeq

ISOPleasant

ISOEventful �0.24

PA �0.28 0.24

N 5 �0.37 0.33 0.94

S 0.71 0.56

R �0.36 0.32 0.63 0.74 0.11

I �0.10 �0.37 0.24

FS �0.11 0.14 0.37 0.43 0.46 0.55

T �0.21 0.30 0.58 0.63 0.12 0.54 0.16 0.52

LAeq �0.34 0.37 0.84 0.93 0.56 0.72 �0.09 0.37 0.57

LA10 � LA90 �0.18 0.15 0.21 0.33 �0.20 0.31 0.36 0.44 0.40 0.23

LCeq � LAeq �0.20 �0.49 �0.49 �0.54 �0.31 �0.27 �0.28 �0.61 �0.22

RA �0.34 0.31 0.60 0.74 0.18 0.71 0.31 0.63 0.58 0.73 0.23 �0.14
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factors. The questionnaire used in part (3) of the online

experiment is reported in Appendix A.

Keeping in mind the remote nature of the study and

ensuring a minimum level of robustness for reliable sound

source recognition, an initial exercise was performed, con-

sisting of a headphone screening test (Woods et al., 2017)

and a headphone reproduction level adjustment test (Gontier

et al., 2019). The level adjustment was performed using an

11-s-long pink noise sample matched to the lowest and high-

est LA90 values from the experimental set. The participants

were asked to adjust their listening level to clearly hear the

quieter sample while keeping the level low enough that they

do not find the louder sample disturbing. The headphones

screening test followed, featuring a stereo signal of a 1-s-

long 100 Hz sine tone, generated with Izotope RX 6 applica-

tion (Izotope, Inc, Camgridge, MA), played at a 3 dB differ-

ence, where one of the equally loud pairs had its phase

inverted. A 100 Hz sine was used because the pilot tests

revealed that the 200 Hz sine tone proposed by Woods et al.
(2017) created a higher uncertainty, varying across different

laptop models, and would likely contribute to the chances of

a participant fooling the test. It was expected that the partici-

pants using speakers would not be able to hear the sine wave

or would be fooled by the inverted phase effect and, there-

fore, not able to pass the trials unless they were indeed using

headphones. The participants needed to recognize the quiet-

est of the three samples in a trial of six attempts. Only par-

ticipants correctly answering five or more out of six trials

were allowed to proceed with the experiment. The partici-

pants were asked not to change their audio output settings

during the remainder of the experiment. (This was

introduced to ensure that a participant is using a headphones

playback system, which allows a listener to clearly recog-

nize a 3 dB difference at 100 Hz as a proxy for sufficient

audio quality playback.)

However, after the initial data collection, questions

were raised as to how the playback loudness impacts the

ecological validity as it relates to the PAQ of the sound-

scape. Given this concern, the PAQ responses from the

online surveys were not included in further data analysis.

Sound source identification is not considered to suffer the

same validity concerns as this is not directly dependent on

the absolute playback level and requires only that the partic-

ipant can clearly hear what is presented. The purpose of the

calibration procedure described above was to ensure that the

participant could clearly hear the softest samples used.

The online questionnaire data were collected between 9

June and 9 August 2020. Within the Gorilla Experiment

Builder, a total of 250 attempts to complete the experiment

were recorded, where 165 participants were excluded either

on the basis of not passing the headphones screening

(N¼ 79) or not completing the experiment, usually before

engaging into the screening (N¼ 83). Out of a total of 88

participants who completed the test, 2 participants were

excluded as outliers as they provided uniform answers

across all of the questions and commented on not being able

to properly hear the stimuli despite their successful comple-

tion of the training tests. The participants of the online

experiment were of the mean age of 32.42 years old and

were 45.1% male and 54.9% female.

Figure 1 illustrates and summarizes the framework and

sections described above.

FIG. 1. The study flow chart indicating the data collection, analysis, modeling, and discussion throughout the study. The subsections in the text to which

each box refers are indicated in italic.
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III. RESULTS

The results of the on-site surveys, online experiment,

and the model development are reported here. They are

reported following the structure of the ISO/TS 12913 series,

revealing the perceived sound source dominance, key per-

ceptual attributes (ISOPleasant and ISOEventful), and the

lockdown-related changes.

A. Perceived sound source dominance

1. 2019 sound source composition per location

The questionnaire data were collected in English,

Italian, and Spanish in London and Venice. The respective

questionnaires can be found in the supplementary material2

and Mitchell et al. (2020). The data presented here were

aggregated per the LocationID.

According to the highest scored mean value of the

dominant sound source type, as shown in Fig. 2, the loca-

tions can be grouped into natural sounds dominated

(RegentsParkJapan, RegentsParkFields, RussellSq), human

sounds dominated (SanMarco, TateModern, StPaulsRow,

StPaulsCross, MonumentoGaribaldi), and noise (traffic and

other noise) sounds dominated (CamdenTown, EustonTap,

TorringtonSq, PancrasLock). Traffic noise and other noise

have been combined here and for the rest of the discussion,

as these responses are highly correlated within this dataset

and it is not helpful to consider them separately for this anal-

ysis. This follows the alternative sound source labels given

in Fig. C.3 of ISO/TS (2018), which combines traffic and

other noise. Finally, MarchmontGarden is unique in that all

of the sound source types are assessed as being nearly

equally present with only 0.2 separating the least present

(other noise, 2.5) and the most present (traffic noise, 2.7).

2. Overall change in the perceived sound source
dominance during lockdown

1803 words describing the sound sources present in the

2019 recordings and 1395 words related to the 2020

recordings were input by participants in response to the

open-ended question Q1 (see Appendix A). The frequency

of occurrence, generated using the WordClouds web appli-

cation (Wordclouds.com, Zygomatic, Vianen, NL), is shown

in Fig. 3 for the 2019 and the 2020 sets. The most frequent

words from the 2019 and 2020 groups are noise, car/traffic,

bird/birds, talk/voice, and (foot)steps.

The results from the listening tests deployed online

were analyzed using the SPSS Statistics v.25 (IBM United

Kingdom Limited, Portsmouth, UK; see Table III).

Levene’s test for equality of variances resulted in highly sta-

tistically significant values for all four sound sources inves-

tigated (less than 0.001). Therefore, a Mann-Whitney U-test

test was used as a nonparametric equivalent to the T-test to

investigate the change in the perceived dominance of the

four sound source types (McKnight and Najab, 2010). The

results for human sounds indicated that the perceived domi-

nance was greater for the 2019 sample (M¼ 3.82) than for

the 2020 sample (M¼ 2.62), U¼ 41 656, p < 0.001. The

results for natural sounds indicated the perceived dominance

increased from 2019 (M¼ 2.00) to 2020 (M¼ 2.54),

U¼ 63 797, p < 0.001. However, the differences for the

noise sources (traffic and other) were not statistically signifi-

cant. The result of these changes is that although human

sounds were the clearly dominant source across the whole

dataset in 2019, in 2020, the sound sources are, on average,

much more evenly balanced. No single sound source cate-

gory was identified as frequent across the 2020 dataset.

B. Model selection, performance, and application

1. ISOPleasant model selected

Following the feature selection, the ISOPleasant model

(given in Table IV) has N5 as the fixed effect with a scaled

coefficient of -0.06, and LAeq, LA10 � LA90, and LCeq � LAeq

as coefficients which vary depending on the LocationID.

The training and testing MAE are very similar, indicating

that the model is neither over- nor underfitting to the train-

ing data (MAEtrain¼ 0.258; MAEtest¼ 0.259). The model

performs very well at predicting the average soundscape

assessment of the locations (R2
train ¼ 0:998; R2

test ¼ 0:85).

The high intraclass correlation (ICC¼ 0.90) demon-

strates that the location-level effects are highly important in

predicting the pleasantness dimension. Within this random-

intercept random-slope model structure, these effects

include the specific context of the location (i.e., the

FIG. 2. (Color online) The mean response per location ID for the perceived

dominance of the sound source types for the 2019 on-site campaign. The

values represent the mean response of all of the participants in each location

to the question “To what extent do you presently hear the following four

types of sounds?”. The response values range from (1) not at all to (5) dom-

inates completely.

FIG. 3. A graphic illustrating the frequency of occurrence of the sound

sources reported by the participants of the online study across all locations,

shown for recordings from 2019 (left) and 2020 (right).
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LocationID factor) and also the LAeq, LA10 � LA90, and

LCeq � LAeq features, whose effects vary across the loca-

tions. These slopes are given in Fig. 4. This point highlights

the need to consider how the context of a location will influ-

ence the relationship between the acoustic features and the

perceived pleasantness.

2. ISOEventful model selected

Through the group-level feature selection, all of the

group-level coefficients were removed, including the

LocationID factor itself. Therefore, the final ISOEventful

model is a flat multivariate linear regression model rather

than a MLM. The ISOEventful model is a linear combina-

tion of S, FS, T, LAeq, and LCeq � LAeq. The training and

testing MAEs are very similar, indicating that the model

is not overfit to the training data (MAEtrain¼ 0.233;

MAEtest¼ 0.231). The model performs slightly worse than

the ISOPleasant model at predicting the mean location

responses but still performs well (R2
train ¼ 0:873;

R2
test ¼ 0:715).

3. Application to the lockdown data

Once the two models were built and assessed, they were

then applied to the lockdown recording data to predict the

new soundscape ISO coordinates. Figure 5(a) shows the pre-

lockdown ISO coordinates for each location, and Fig. 5(b)

shows how the soundscapes are predicted to have been

assessed during the lockdown period. As in the model

assessment process, the predicted responses are calculated

for each recording individually, and then the mean for each

location is calculated and plotted on the circumplex.

In 2019, the majority of the locations in the dataset fall

within the “vibrant” quadrant of the circumplex, particularly

those which are primarily dominated by human activity

(e.g., San Marco, Tate Modern). Camden Town and Euston

Tap, which are both, in general, visually and acoustically

dominated by traffic, are the only two to be rated as

“chaotic,” and no locations are, overall, considered to be

“monotonous.” During the 2020 lockdown, there is a gen-

eral positive move along the “pleasant” dimension and gen-

eral negative move along the “eventful” dimension, but

TABLE III. The mean values and standard deviations for the perceived dominance of sound sources (rated from one to five), assessed via an online survey.

Sound source type Campaign N Mean Standard deviation Standard error mean

Traffic 2019 422 2.51 1.369 0.067

2020 383 2.56 1.525 0.078

Other 2019 422 2.00 1.182 0.058

2020 382 2.23 1.333 0.068

Human 2019 423 3.82 1.143 0.056

2020 382 2.62 1.346 0.069

Natural 2019 424 2.00 1.307 0.063

2020 380 2.54 1.441 0.074

TABLE IV. The scaled linear regression models of ISOPleasant and ISOEventful for 13 locations in London and

Venice. ISOPleasant model structure, random slope, random intercept multilevel model (MLM); ISOEventful model

structure, multivariate linear regression. Statistically significant p-values are highlighted in bold.

ISOPleasant ISOEventful

Predictors Estimates Confidence Interval (CI) p Estimates CI p

(Intercept) 0.24 0.15–0.33 <0.001 0.14 0.12–0.16 <0.001

N5 �0.06 �0.10–0.02 <0.001

S �0.08 �0.11–0.06 <0.001

FS �0.02 �0.05–0.00 0.033

T 0.04 0.01–0.07 0.002

L Aeq 0.14 0.11–0.17 <0.001

LCeq � LAeq �0.03 �0.05–0.00 0.052

Random effects

r2 0.11

s00 0:03LocationID

s11 0:02LocationID:LAeq

0:00LocationID:LA10�LA90

0:00LocationID:LCeq�LAeq

ICC 0.90

N 13LocationID

Observations 914 914

MAE train, test 0.258 0.259 0.233 0.231
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several different patterns of movement can be noted. These

are investigated further in Sec. IV below.

IV. DISCUSSION

A. Interpretation of the results

To interpret the results addressing RQ1 and RQ2, it is

necessary to separately look into the overall changes in the

sound source composition and the affective quality of the

soundscapes per location.

1. Change in the sound source composition

The open-ended question about sound sources in the

online survey did not reveal a change in the sound source

types but rather confirmed that all types were still present in

both conditions. The sound source composition question

taken from Method A of ISO/TS (2018) revealed a statisti-

cally significant reduction in the human sound sources and a

significant increase in the perceived dominance of natural

sound sources.

The most frequent sound sources detected from the

open-ended question correspond to the main four sound

source types investigated, which indicated that all types

remained present in the lockdown condition (at all of the

locations). Although the traffic intensity might have

decreased, where the results of the Mann-Whitney U-test

were inconclusive but supported by the psychoacoustic mea-

surements (Aletta et al., 2020), the traffic-related sound

sources were still clearly present.

The sound source composition of an outdoor acoustic

environment is extremely complex. Removing one compo-

nent, such as human sounds, has implications on the whole

(Gordo et al., 2021). Testing the effects of this in situ is not

straightforward, and interpreting this study in line with

“what is the impact of human sounds” must be taken within

the broader context of the range of conditions, which

changed within the acoustic environment. However, looking

at the overarching picture, the lockdown condition was a

useful and unique case study to understand the impact which

human activities—and the human sound source type in par-

ticular—can have on soundscape perception of urban open

spaces.

2. Predicted relative changes in soundscapes due to
COVID-19 restrictions

To interpret how the change of the acoustic environ-

ment at the locations examined would have been perceived

and answer RQ2, the relative change vectors within the cir-

cumplex space are shown in Fig. 6. This clearly shows a few

different patterns of the soundscape change resulting from

the effects of the 2020 lockdown. These can be further

looked into depending on the magnitude and direction of

change; shifts between the quadrants, shown in Fig. 5; and

the sound source composition. The discussion below is orga-

nized according to groups of locations, which show similar

behaviors in the predicted magnitude and direction of the

change, or discusses a single location that is particularly

notable.

a. Piazza San Marco. The largest change is seen in

Piazza San Marco, with a predicted increase in pleasantness

of 0.24 and a decrease in eventfulness of 0.44, enough to

move the soundscape out of the vibrant quadrant and into

the “calm” quadrant. This extreme change (relative to the

rest of the locations) is exactly what would be expected

given the unique context of the measurements taken in

FIG. 4. (Color online) The location-

level scaled coefficients for the

ISOPleasant model.
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2019—the measurement campaign corresponded with

Carnevale, a yearly festival which centers around the square.

By contrast, because of the particularly strict measures

imposed in Italy during the lockdown measurement period,

the square was almost entirely devoid of people. What is

promising is that without any of this contextual information

about the presence or absence of people, our model is able

to capture and reflect what may be considered a reasonable

and expected direction and scale of change within the

soundscape circumplex.

b. Locations showing an increase in

pleasantness. The next locations of interest are those

which, in the 2019 survey data, were rated as being domi-

nated by traffic noise: Euston Tap, Camden Town,

Torrington Square, and Pancras Lock. These are the only

locations (besides San Marco) which show a predicted

increase in pleasantness. Of these traffic-dominated spaces,

the two that were most heavily dominated by traffic noise

(Camden Town and Euston Tap) showed the most increase

in pleasantness with Torrington Square having slightly less

of an increase. Pancras Lock, which was also rated as having

high levels of both human and natural sounds, shows only a

modest improvement in pleasantness.

c. Locations showing a decrease in

pleasantness. Among the locations which are predicted to

experience a negative effect on pleasantness, we see a mix

of spaces that were assessed as being dominated by human

(St. Pauls Cross and Tate Modern) and natural (Regents

Park Japan, Regents Park Fields, Russell Square) sounds

before the lockdown. It is hard to discern a pattern of differ-

ence between these two groups, although it appears that the

human-dominated spaces saw a greater reduction in event-

fulness compared to the natural-dominated spaces.

FIG. 5. (Color online) The soundscape circumplex coordinates for (a) the

mean ISOPleasant and ISOEventful responses for each location and (b) the

mean predicted responses based on the recordings made during the lock-

down and the change in the location’s placement in the circumplex. In (b),

the marker outline is shown for the 2019 location, and red arrows indicate

the change in the location’s coordinates.

FIG. 6. (Color online) The relative change in the soundscape perception in

the circumplex due to the COVID-19 lockdowns as predicted by the mod-

els, represented as vectors centered on the origin. *The landscaping works

dominated session is shown separately as “MonumentoGaribaldi*” with a

gray arrow to indicate that this is distinct from the effects of the lockdown

changes.
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In general, we note that most of the spaces experience

some degree of reduction in eventfulness. This pattern is

mainly consistent with what would be expected from a

reduction in the human presence in these spaces (Aletta and

Kang, 2018), as reflected by the observation that, for the

most part, those spaces which had the most human sounds

prior to the lockdown showed the greatest reduction in

eventfulness during the lockdown. In particular, Tate

Modern, Camden Town, and Torrington Square show the

greatest reduction in eventfulness. This appears to be due to

these locations showing the greatest reduction in overall

LAeq compared to other locations (8.1, 5.2, and 9.2 dB,

respectively) with LAeq being the most influential feature in

the eventfulness model, as shown in Table IV. However,

Russell Square also experienced a large decrease in LAeq,

on average (10.5 dB), but does not show the same reduction

in eventfulness. This appears as a result of the correspond-

ingly large decrease in S (1.17 acum), which is not seen at

the three previously mentioned locations. Russell Square

normally features a medium-sized jet fountain, which was

turned off during the lockdowns in 2020 and, therefore,

experienced a drop in the overall sound level but an

increase in the proportion of low frequency noise to high

frequency noise reflected by a decrease in sharpness, which,

within the eventfulness model, effectively cancels out the

impact of the reduction in LAeq. Whereas the overall sound

level has an important impact, to determine the true impact

a reduction in sound level may have, it must be taken in

context with how the other aspects of the sound will also

change.

d. Euston Tap. An unexpected result is that Euston Tap

is predicted to experience an increase in eventfulness, and it

is unclear whether this accurately reflects the real experience

people would have had in the space. Normally, Euston Tap

is a mostly outdoor drinking venue located at the entrance to

London Euston Station and situated directly along a very

busy central London road. During the 2020 survey, the

researchers noted that the music and chatter of people from

the pub was noticeably missing but that the perceived reduc-

tion in road traffic was minimal. Based on the theory of

vibrancy, which would suggest it is driven by human pres-

ence and sounds (Aletta and Kang, 2018), we would not,

therefore, expect a shift in the vibrant direction as indicated

here. This discrepancy may reveal a weakness in the

context-independent ISOEventful model or it may, in fact,

be indicating that at certain thresholds of traffic noise, a

reduction in the level—and, hence, a reduction in the ener-

getic masking—will allow other aspects of the sound to

influence the perception.

e. Monumento Garibaldi. Finally, special attention

should be paid to the results shown for Monumento

Garibaldi, which, in 2019, was perceived as a pleasant and

slightly calm green space, featuring a gravel walkway.

During the first measurement session during the lockdown

in 2020, the researcher noted that the soundscape was

dominated by landscaping works, in particular, noise from

strimmers (or weed whackers). To gain a sample which was

more representative of the impact of the lockdowns, the

researcher returned another day to repeat the measurements

without interference from the landscaping works.

To examine the impact of these two scenarios sepa-

rately, the prediction model was fitted to the data from the

two sessions independently, and the session that was

impacted by the landscaping works is shown in Fig. 6 in

gray and labeled MonumentoGaribaldi*, whereas the unaf-

fected session is shown in red. In the latter case, the pre-

dicted change in soundscape as a result of the lockdown fits

neatly into what would be expected and closely matches the

predicted behavior of similar locations in London (i.e.,

Marchmont Garden and Russell Square). On the other hand,

the session which was dominated by noise from the

strimmers is predicted to have become much more chaotic

with a decrease in pleasantness of 0.16 and an increase in

eventfulness of 0.27. This indicates that although the model

has no contextual information about the type of sound and,

in fact, the training data never included sounds from similar

equipment, just based on the psychoacoustic features of the

sound, it is able to reasonably predict the expected change

in the soundscape.

f. General notes. As a whole, the primary impact of

the 2020 lockdowns on the soundscapes in London and

Venice was an overall decrease in eventfulness. With the

exception of Euston Tap, all of the sessions show some

degree of reduction in eventfulness, reflecting the general

decrease in the sound levels and human sound sources

across the locations. The impact of the lockdowns on pleas-

antness is more mixed and seems to be driven by the previ-

ous dominance of traffic noise in the space. However, it

could also be noted that although all of the locations experi-

enced a reduction in the sound level, those which are pre-

dicted to become more pleasant had an average LAeq above

60 dB in 2019. By contrast, the locations which were pre-

dicted to experience a decrease in pleasantness generally

had sound levels below 60 dBA in 2019. This may indicate

that reductions in the sound level can improve pleasantness

when the sound level exceeds some threshold of around

60–65 dBA but are ineffective when sound levels are below

this threshold. Similarly, Yang and Kang (2005) showed

that when the sound level is “lower than a certain value,

say 70 dB” there is no longer a significant improvement in

the evaluation of the acoustic comfort as the sound level

reduces. It is unclear at this point where this threshold

would lie for pleasantness/annoyance, how strict it may be,

or how it is impacted by the sound source composition of

the acoustic environment; therefore, further research is

needed in this area.

3. Model selection results

The most immediately interesting result of the model

building and feature selection process, answering RQ3, is
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the apparent irrelevance of the location context to the

ISOEventful dimension. The MLM structure was chosen

because the starting assumption was that the soundscape

perception is heavily influenced by contextual factors such

as expectations of the space and visual context (Ricciardi

et al., 2015). For this modeling, these factors can be consid-

ered to be location-level latent variables, at least, partially

accounted for by the inclusion of the LocationID as the

second-level factor. Whereas this assumption certainly held

true for ISOPleasant, our results indicate that these types of

contextual factors are not significant for ISOEventful, and

do not affect the relationship between the acoustic features

of the sound and perception.

In particular, this result may herald a shift in the model-

ing approach for soundscapes—where previous methods in

the soundscape and noise paradigms, have mostly focused

on deriving the acoustic models of annoyance (in other

words, they have focused on the ISOPleasant dimension),

perhaps they should instead consider the acoustic models as

primarily describing the eventfulness dimension when con-

sidered in situ. In addition, this study takes the approach of

modeling responses at an individual-level to derive the

soundscape assessment of the location. Rather than either

attempting to represent the predicted response of an individ-

ual person—which is less useful in this sort of practical

application—or base the model on average metrics of the

location, the goal is instead to characterize the location itself

through the aggregated predicted responses of individuals.

The authors believe this modeling approach better addresses

the practical goal of predictive soundscape modeling and

reflects the structure of the data collection.

B. Limitations of the study

The on-site sampling method was initially not intended

as the ultimate characterization of a location’s soundscape

but rather as a tool for model development. Therefore, the

change observed does not necessarily represent the ground

truth about the site’s soundscape if such a thing exists.

Further, the online listening tests took a relatively small but

random sample from the available database1 and did not

include any contextual information. This proved to be suffi-

cient for the purpose of detecting a change in the sound

source composition; however, the relatively small sample of

recordings included in the online study does limit how rep-

resentative they are of the location’s sound environment as a

whole. Similarly, the surveys and recordings taken represent

only a snapshot of the soundscape or sound environment for

a short period in time. This is a flaw in most soundscape

sampling methods presented in the literature and ISO/TS

(2018). To truly be said to characterize the soundscape of a

space, long-term monitoring and survey methods will need

to be developed to capture the changing environmental and

contextual conditions in the space. Models of the sort pre-

sented here, which are based on measurable quantities,

could prove to be useful in this sort of long-term monitoring

as they could take continuous inputs from sensors and gen-

erate the likely soundscape assessment over time.

The audio-visual interaction forms a key component in

people’s perception of urban spaces. This consideration has

been a strength of soundscape research and incorporated via

the use of an in situ data collection. However, the visual

aspect and, in particular, how the visual environment

changed as a result of the lockdown condition, was not con-

sidered in this study, reducing the comprehensiveness of the

model. This was due primarily to the data collection limita-

tions imposed by the lockdown restrictions, which made it

impractical to replicate the 360� videos made during the

2019 sessions. Future work on comprehensive predictive

soundscape models should strive to make use of this visual

aspect within their considered features.

The limitation of the sound source categorization

adopted from the ISO standard is that it may not be clear to

a respondent in which category they would place commu-

nity sounds like church bells and music. This may be partic-

ularly relevant for comparing the lockdown condition as, in

particular, the ringing of bells for worship varied in different

contexts throughout the pandemic. Whether the bells ceased

entirely or were increased not only would have an impact on

the sound environment, but the purposeful action behind the

decision to ring bells may have changed to the public’s rela-

tionship to and perception of the sound itself (Parker and

Spennemann, 2020). The open-ended question on the sound

sources, however, revealed the presence of the church bells

in both years. Unfortunately, this is a limitation of the sound

source categories given by the ISO standard on which this

questionnaire was based. A sensible update based on the

findings and experiences reported here would be to combine

the traffic and other noise categories because separating

them does not appear to provide additional information and

include a new category, which would in some way encapsu-

late the types of community sounds for which there is cur-

rently not a clear category.

Further, the lockdown condition is likely to cause distor-

tions of the circumplex soundscape perception model.

Therefore, it is important to acknowledge that all of the predic-

tions were made for the people with no experience of the pan-

demic and its psychological effects. Conceptually, this model

captured the perceptual mapping (i.e., the relationship between

the acoustic indicator inputs and the soundscape descriptor

outputs) of people in 2019, but this perceptual mapping is

likely to have been affected by the psychological and contex-

tual impacts of the lockdown itself, independent of its changes

on the sound environment. Future research might look into

potential perception changes in the post-pandemic world.

V. CONCLUSION

This study demonstrates an application of predictive

modeling to the field of soundscape studies. The model

building results reveal that within this dataset, an approach

based on psychoacoustics can achieve R2 ¼ 0:85 for predict-

ing the pleasantness of locations and R2 ¼ 0:715 for
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predicting the eventfulness. A modeling focused method of

this sort is a key component to the potential scalability of

the soundscape approach to applications such as smart city

sensing, urban planning, and cost-effective, sustainable

design. To demonstrate the usefulness and feasibility of

such an approach, we apply our predictive model to a unique

case study in which the traditional soundscape survey meth-

ods were impossible.

By applying this predictive model to recordings col-

lected during the 2020 lockdown, the change in perception

of the urban soundscapes is revealed. In general, the sound-

scapes became less eventful, and those locations that were

previously dominated by traffic noise became more pleas-

ant. By contrast, the previously human- and natural-

dominated locations are, in fact, predicted to become less

pleasant despite the decrease in the sound levels. Although

all sound source categories remained present in both years,

overall, in 2020, a decrease in the human sounds’ domi-

nance was observed together with an increase in the per-

ceived dominance of natural sounds. Although these results

are limited in that they represent one snapshot of the sound-

scape of the spaces, the success of the model in responding

to new and disturbing sound events demonstrates its

potential usefulness in long-term monitoring of urban

soundscapes.
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APPENDIX A: ONLINE QUESTIONNAIRE

For the online questionnaire, as presented to respond-

ents, please see Table V.

APPENDIX B: MODEL RESULTS

Table VI presents the unscaled coefficients for the

ISOPleasant (see Fig. 7) and ISOEventful predictive models.

The scaled coefficients are presented in the body of the text

to facilitate the comparisons among the various factors.

However, we feel it is important to present the unscaled

coefficients such that these models could be implemented

and compared for future work.

TABLE V. The questionnaire deployed via the Gorilla Experiment Builder.

Q1 While listening, please note any sound sources you can identify in

this sound environment

Q2 To what extent have you heard the following four types of sounds?

Traffic noise (e.g., cars, buses, trains, airplanes)

Not at all / A little / Moderately / A lot / Dominates completely

Other noise (e.g., sirens, construction, industry, loading of goods)

Not at all / A little / Moderately / A lot / Dominates completely

Sounds from human beings (e.g., conversation, laughter, children

at play, footsteps)

Not at all / A little / Moderately / A lot / Dominates completely

Natural sounds (e.g., singing birds, flowing water, wind in

vegetation)

Not at all / A little / Moderately / A lot / Dominates completely

TABLE VI. The unscaled linear regression models of ISOPleasant and ISOEventful for 13 locations in London and

Venice. Statistically significant p-values are highlighted in bold.

ISOPleasant ISOEventful

Predictors Estimates CI p Estimates CI p

(Intercept) 0.39 0.28–0.50 <0.001 �0.77 �1.05–0.48 <0.001

N5 �0.01 �0.01–0.00 <0.001

S �0.17 �0.23–0.12 <0.001

FS �1.36 �2.61–0.11 0.033

T 0.24 0.08–0.39 0.002

L Aeq 0.02 0.02– 0.02 <0.001

LCeq � LAeq �0.01 �0.02–0.00 0.052

Random effects

r2 0.11

s00 1:01LocationID

s11 0:00LocationID:LAeq

0:00LocationID:LA10�LA90

0:00LocationID:LCeq�LAeq

ICC 0.90

N 13LocationID

Observations 914 914
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